Skip to main content
Log in

Modeling and Stability Analysis of a Flexible Rotor Based on the Timoshenko Beam Theory

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Based on the Timoshenko beam theory, a novel mathematical model of a rotating shaft with centrifugal terms is developed by using Hamilton’s principle and Euler angles. The associated conventional model is provided for comparison purpose. The features of the proposed mathematical model are discussed based on some selected coordinate systems. The frequencies and modes are investigated to show the influences of centrifugal terms on the stability of the gyroscopic systems. The results show that the novel model proposed may lose stability due to the centrifugal terms. It is also found that the backward precession mode can be changed into a forward one beyond the critical rotating velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eshleman RL. Flexible rotor bearing system dynamics. New York: ASME Publications; 1978.

    Google Scholar 

  2. Rao JS. Rotor dynamics. New York: Wiley; 1983.

    Google Scholar 

  3. Rao JS. History of rotating machinery dynamics. Netherlands: Springer; 2011.

    Book  Google Scholar 

  4. Lajimi SAM, Heppler GR, Abdel-Rahman EM. Primary resonance of a beam-rigid body microgyroscope. Int J Nonlinear Mech. 2015;77:364–75.

    Article  Google Scholar 

  5. Nayfeh AH, Abdel-Rahman EM, Ghommem M. A novel differential frequency micro-gyroscope. J Vib Control. 2015;21(5):872–82.

    Article  MathSciNet  Google Scholar 

  6. Lajimi SAM, Heppler GR, Abdel-Rahman EM. On modeling beam-rigid-body microgyroscopes. Appl Math Model. 2016;42:753–60.

    Article  MathSciNet  Google Scholar 

  7. Lajimi SAM, Heppler GR, Abdel-Rahman EM. A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech Syst Signal Process. 2017;83:163–75.

    Article  Google Scholar 

  8. Katz R, et al. The dynamic response of a rotating shaft subject to a moving load. J Sound Vib. 1988;122(1):131–48.

    Article  Google Scholar 

  9. Sheu GJ, Yang SM. Dynamic analysis of a spinning Rayleigh beam. Int J Mech Sci. 2005;47(2):157–69.

    Article  Google Scholar 

  10. Han SM, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. J Sound Vib. 1999;225(5):935–88.

    Article  Google Scholar 

  11. Badlanit M, Kleinhenz W, Hsiao CC. The effect of rotary inertia and shear deformation on the parametric stability of unsymmetric shafts. Mech Mach Theory. 1978;13:543–53.

    Article  Google Scholar 

  12. Bauer HF. Vibration of a rotating uniform beam, part 1: orientation in the axis of rotation. J Sound Vib. 1980;72(2):177–89.

    Article  Google Scholar 

  13. Gliwice GR. The effect of shear and rotary inertia of a rotor at its critical speeds. Arch Appl Mech. 1991;61:104–9.

    Google Scholar 

  14. Han RPS, Zu JW-Z. Modal analysis of rotating shafts; a body-fixed axis formulation approach. J Sound Vib. 1992;156(1):1–16.

    Article  MathSciNet  Google Scholar 

  15. Zu JW, Han RPS. Natural frequencies and normal modes of a spinning Timoshenko beam with general boundary conditions. J Appl Mech. 1992;59:197–205.

    Article  Google Scholar 

  16. Han RPS, Zu JW-Z. Analytical dynamics of a spinning Timoshenko beam subjected to a moving load. J Frankl Inst. 1993;330(1):113–29.

    Article  Google Scholar 

  17. Zu JW-Z, Han RPS. Dynamic response of a spinning Timoshenko beam with general boundary conditions and subjected to a moving load. J Appl Mech. 1994;61:152–9.

    Article  Google Scholar 

  18. Pai PF, Xin Q, Xingwen D. Modeling and dynamic characteristics of spinning Rayleigh beams. Int J Mech Sci. 2013;68:291–303.

    Article  Google Scholar 

  19. Chen LW, Peng WK. Stability analyses of a Timoshenko shaft with dissimilar lateral moments of inertia. J Sound Vib. 1997;207(1):33–46.

    Article  Google Scholar 

  20. Lee HP, Tan TH, Leng GSB. Dynamic stability of spinning Timoshenko shafts with a time-dependent spin rate. J Sound Vib. 1997;199(3):401–15.

    Article  Google Scholar 

  21. Mirtalaie SH, Hajabasi MA. A new methodology for modeling and free vibrations analysis of rotating shaft based on the Timoshenko beam theory. J Vib Acoust. 2016;138(2):13.

    Article  Google Scholar 

  22. Luo Z, et al. Prediction of vibration characteristics of blisks using similitude models. Mech Based Des Struct. 2019;47(2):121–35.

    Article  Google Scholar 

  23. Qin ZY, Han QK, Chu FL. Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. Proc Inst Mech Eng Part C J Mech Eng Sci. 2014;228(4):646–63.

    Article  Google Scholar 

  24. Ge XB, et al. A novel data-driven model based parameter estimation of nonlinear systems. J Sound Vib. 2019;453:188–200.

    Article  Google Scholar 

  25. Qin ZY, et al. Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int J Mech Sci. 2018;142:127–39.

    Article  Google Scholar 

  26. Qin ZY, et al. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct. 2019;220:847–60.

    Article  Google Scholar 

  27. Alkire K. An analysis of rotor blade twist variables associated with different Euler sequences and pretwist treatments. NASA Tech Memo. 1984;84394:1–36.

    Google Scholar 

  28. Nayfeh AH, Pai PF. Linear and nonlinear structural mechanics. New York: Wiley; 2004.

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Project Nos. 11972050, 11672007, 11832002) and Beijing Natural Science Foundation (Project No. 3172003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, X. & Zhang, W. Modeling and Stability Analysis of a Flexible Rotor Based on the Timoshenko Beam Theory. Acta Mech. Solida Sin. 33, 281–293 (2020). https://doi.org/10.1007/s10338-019-00146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00146-y

Keywords

Navigation