Skip to main content
Log in

Fractional Dynamics of Fluid-Conveying Pipes Made of Polymer-Like Materials

  • Original Paper
  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The fluid-conveying pipes made of polymer-like materials are widely applied in engineering fields. However, the fractional dynamics of fluid–solid interaction remain unknown. In this work, the fractional dynamics of the pipes subjected to the excitation of supporting foundation are studied. A new nonlinear, fractional-order dynamic model is presented. The method of multiple scales is adopted directly to solve the model for the case of primary resonances. Numerical results are presented to show the effects of fractional order, foundation vibration, and other physical parameters on the steady-state response and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Païdoussis MP, Sundararajan C. Parametric and combination resonances of a pipe conveying pulsating fluid. J Appl Mech. 1975;42(4):780–4.

    Article  MATH  Google Scholar 

  2. Holmes PJ. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis. J Sound Vib. 1977;53(4):471–503.

    Article  MathSciNet  MATH  Google Scholar 

  3. Jayaraman K, Narayanan S. Chaotic oscillators in pipes conveying pulsating fluid. Nonlinear Dyn. 1996;10(4):333–57.

    Article  Google Scholar 

  4. Ginsberg J. The dynamic stability of a pipe conveying a pulsatile flow. Int J Eng Sci. 1973;11(9):1013–24.

    Article  MATH  Google Scholar 

  5. Yang XD, Yang TZ, Jin JD. Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid. Acta Mech Solida Sin. 2007;20(4):350–6.

    Article  Google Scholar 

  6. Wang L. A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid. Int J Non-Linear Mech. 2009;44(1):115–21.

    Article  Google Scholar 

  7. Wang L. Flutter instability of supported pipes conveying fluid subjected to distributed follower forces. Acta Mech Solida Sin. 2012;25(1):46–52.

    Article  Google Scholar 

  8. Zhou XP, Bernardes MA, Ochieng RM. Influence of atmospheric cross flow on solar updraft tower inflow. Energy. 2012;42(1):393–400.

    Article  Google Scholar 

  9. Dai HL, Wang L, Qian Q, Ni Q. Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Eng. 2014;77:12–22.

    Article  Google Scholar 

  10. Ni Q, Zhang ZL, Wang L, Qian Q, Tang M. Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. Acta Mech Solida Sin. 2014;27(2):162–71.

    Article  Google Scholar 

  11. Chen LQ, Zhang YL, Zhang GC, Ding H. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int J Non-Linear Mech. 2014;58:11–21.

    Article  Google Scholar 

  12. Zhou XP, Xu YY, Yuan S, Chen RC, Song B. Pressure and power potential of sloped-collector solar updraft tower power plant. Int J Heat Mass Transf. 2014;75:450–61.

    Article  Google Scholar 

  13. Zhou XP, Xu YY, Hou YX. Effect of flow area to fluid power and turbine pressure drop factor of solar chimney power plants. J SolEnergy Eng. 2017;139(4):041012.

    Google Scholar 

  14. Chen A, Su J. Dynamic behavior of pipes conveying gas-liquid two-phase flow. Nucl Eng Des. 2015;292:204–12.

    Article  Google Scholar 

  15. Mnassri I, El Baroudi A. Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid. Acta Mech Solida Sin. 2017;30(4):435–44.

    Article  Google Scholar 

  16. Huang YM, Ge S, Wu W, He J. A direct method of natural frequency analysis on pipeline conveying fluid with both ends supported. Nucl Eng Des. 2012;253:12–22.

    Article  Google Scholar 

  17. Semler C, Païdoussis MP. Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J Fluids Struct. 1996;10(7):787–825.

    Article  Google Scholar 

  18. Öz HR. Non-linear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. Int J Non-Linear Mech. 2001;36(7):1031–9.

    Article  MATH  Google Scholar 

  19. Gulyayer VI, Tolbatov EY. Forced and self-excited vibration of pipes containing mobile boiling fluid clots. J Sound Vib. 2002;257(3):425–37.

    Article  Google Scholar 

  20. Jin JD. Stability and chaotic motions of a restrained pipe conveying fluid. J Sound Vib. 1997;208(3):427–39.

    Article  Google Scholar 

  21. Jin JD, Zou GS. Bifurcation and chaotic motions in the autonomous system of a restrained pipe conveying fluid. J Sound Vib. 2003;260(5):783–805.

    Article  Google Scholar 

  22. Panda LN, Kar RC. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 2007;49(1):9–30.

    Article  MATH  Google Scholar 

  23. Panda LN, Kar RC. Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J Sound Vib. 2008;309(3):375–406.

    Article  Google Scholar 

  24. Qian Q, Wang L, Ni Q. Instability of simply supported pipes conveying fluid under thermal loads. Mech Res Commun. 2009;36(3):413–7.

    Article  MATH  Google Scholar 

  25. Liang F, Wen BC. Forced vibrations with internal resonance of a pipe conveying fluid under external periodic excitation. Acta Mech Solida Sin. 2011;24(6):477–83.

    Article  Google Scholar 

  26. Ghayesh MH, Païdoussis MP, Modarres-Sadeghi Y. Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J Sound Vib. 2011;330(12):2869–99.

    Article  Google Scholar 

  27. Wang L, Dai HL, Ni Q. Nonconservative pipes conveying fluid: evolution of mode shapes with increasing flow velocity. J Vib Control. 2015;21(16):3359–67.

    Article  Google Scholar 

  28. Wang L, Dai HL, Ni Q. Mode exchange and unstable modes in the dynamics of conical pipes conveying fluid. J Vib Control. 2016;22(4):1003–9.

    Article  MathSciNet  Google Scholar 

  29. Luo YY, Tang M, Ni Q, Wang YK, Wang L. Nonlinear vibration of a loosely supported curved pipe conveying pulsating fluid under principal parametric resonance. Acta Mech Solida Sin. 2016;29(5):468–78.

    Article  Google Scholar 

  30. Wang L, Ni Q, Huang YY. Dynamical behaviors of a fluid-conveying curved pipe subjected to motion constraints and harmonic excitation. J Sound Vib. 2007;306(3):955–67.

    Google Scholar 

  31. Zhou XP. Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mech Solida Sin. 2012;25(2):168–76.

    Article  Google Scholar 

  32. Zhou XP, Wang L. Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett. 2012;7(7):679–84.

    Article  Google Scholar 

  33. Zhou XP, Zhang F. Bifurcation of a partially immersed plate between two parallel plates. J Fluid Mech. 2017;817:122–37.

    Article  MathSciNet  MATH  Google Scholar 

  34. Aspley A, He C, McCuan J. Force profiles for parallel plates partially immersed in a liquid bath. J Math Fluid Mech. 2015;17(1):87–102.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rossikhin YA, Shitikova MV. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev. 2010;63(1):1–52.

    Google Scholar 

  36. Yin Y, Zhu KQ. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl Math Comput. 2006;173(1):231–42.

    MathSciNet  MATH  Google Scholar 

  37. Chen LQ, Zhao WJ, Zu JW. Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J Sound Vib. 2004;278(4):861–71.

    Article  MATH  Google Scholar 

  38. Yang TZ, Fang B. Asymptotic analysis of an axially viscoelastic string constituted by a fractional differentiation law. Int J Non-Linear Mech. 2013;49:170–4.

    Article  Google Scholar 

  39. Yang TZ, Fang B. Stability in parametric resonance of an axially moving beam constituted by a fractional differentiation law. Arch Appl Mech. 2012;82(12):1763–70.

    Article  MATH  Google Scholar 

  40. Sınır BG, Dönmez Demir D. The analysis of nonlinear vibrations of a pipe conveying an ideal fluid. Eur J Mech B Fluids. 2015;52:38–44.

    Article  MathSciNet  Google Scholar 

  41. Païdoussis MP. Fluid-structure interactions: slender structures and axial flow. London: Academic Press; 1998.

    Google Scholar 

  42. Oldham KB, Spanier J. The fractional calculus. New York: Academic Press; 1974.

    MATH  Google Scholar 

  43. Rossikhin YA, Shitikova MV. On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech Res Commun. 2012;45:22–7.

    Article  Google Scholar 

  44. Chen LQ, Zhang W, Zu JW. Nonlinear dynamics for transverse motion of axially moving strings. Chaos Solitons Fractals. 2009;40(1):78–90.

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen LQ, Zu JW. Solvability condition in multi-scale analysis of gyroscopic continua. J Sound Vib. 2008;309(1):338–42.

    Article  Google Scholar 

  46. Allahviranloo T, Ahmady N, Ahmady E. Numerical solution of fuzzy differential equations by predictor–corrector method. Inf Sci. 2007;177(7):1633–47.

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun K, Wang X, Sprott JC. Bifurcations and chaos in fractional-order simplified Lorenz system. Int J Bifurc Chaos. 2010;20(04):1209–19.

    Article  MathSciNet  MATH  Google Scholar 

  48. Ansari R, Oskouie MF, Gholami R. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Physica E. 2016;75:266–71.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11672187), the Natural Science Research Project of the Institutions of Higher Education in Anhui Province (Nos. KJ2017A114, KJ2017A106, TSKJ2016B18), Natural Science Foundation of Liaoning Province (201602573), and the Opening fund of Key Laboratory of Mechanics, Anhui Polytechnic University (No. 201607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Yang, T. & Fang, B. Fractional Dynamics of Fluid-Conveying Pipes Made of Polymer-Like Materials. Acta Mech. Solida Sin. 31, 243–258 (2018). https://doi.org/10.1007/s10338-018-0007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0007-9

Keywords

Navigation