Skip to main content
Log in

Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The C-terminal epitope imprinted polymers on the silica were prepared by reversible addition-fragmentation chain transfer (RAFT) strategy with C-terminal nonapeptide of cytochrome c (Cyt c) as the template. 4-cyano-4-(phenylcarbonothioylthio) phetanoic acid was immobilized on the silica as a chain transfer agent to regulate the polymerization of the imprinted layer to enhance the recognition performance of the imprinted materials for the peptide and target protein. Additionally, zinc methacrylate was used as a functional monomer to form the imprinted sites through the synergistic effect of Zn2+ chelating, hydrogen bonding and electrostatic attraction, which further improved the recognition between polymers and protein. The molecularly imprinted polymers prepared with RAFT strategy show good recognition for the epitope peptide and Cyt c with imprinting factors of 7.96 and 6.17, respectively, which is higher than those prepared without RAFT strategy. Furthermore, the imprinted polymers have a good binding capacity and imprinting factor for Cyt c in multi-proteins selective recognition and have good reusability. The performance of Cyt c recognition in bovine serum by the epitope imprinted polymers was calculated by HPLC and the results demonstrated the well selectivity and potential application for Cyt c recognition in biological sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628. https://doi.org/10.1002/jssc.201200784

    Article  CAS  PubMed  Google Scholar 

  2. Fu GQ, He HY, Chai ZH, Chen HC, Kong JA, Wang Y, Jiang YZ (2011) Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption. Anal Chem 83(4):1431–1436. https://doi.org/10.1021/ac1029924

    Article  CAS  PubMed  Google Scholar 

  3. Guo T, Deng QL, Fang GZ, Liu CC, Huang X, Wang S (2015) Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c. Biosensors Bioelectron 74:498–503. https://doi.org/10.1016/j.bios.2015.06.058

    Article  CAS  Google Scholar 

  4. Niu H, Yang YQ, Zhang HQ (2015) Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples. Biosensors Bioelectron 74:440–446. https://doi.org/10.1016/j.bios.2015.06.071

    Article  CAS  Google Scholar 

  5. Zhang ZL, Zhang XD, Niu DC, Li YS, Shi JL (2017) Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation. J Mater Chem B 5(22):4214–4220. https://doi.org/10.1039/c7tb00886d

    Article  CAS  PubMed  Google Scholar 

  6. Wulff G, Gross T, Schonfeld R (1997) Enzyme models based on molecularly imprinted polymers with strong esterase activity. Angew Chem Int Ed Engl 36(18):1962–1964. https://doi.org/10.1002/anie.199719621

    Article  CAS  Google Scholar 

  7. Xu SX, Wang LS, Liu Z (2021) Molecularly imprinted polymer nanoparticles: an emerging versatile platform for cancer therapy. Angew Chem Int Ed 60(8):3858–3869. https://doi.org/10.1002/anie.202005309

    Article  CAS  Google Scholar 

  8. Yang Q, Li JH, Wang XY, Peng HL, Xiong H, Chen LX (2018) Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 112:54–71. https://doi.org/10.1016/j.bios.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  9. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378(8):1887–1897. https://doi.org/10.1007/s00216-003-2450-8

    Article  CAS  PubMed  Google Scholar 

  10. Zhang N, Xu YR, Li ZL, Yan CR, Mei K, Ding ML, Ding SC, Guan P, Qian LW, Du CB, Hu XL (2019) Molecularly imprinted materials for selective biological recognition. Macromol Rapid Commun 40(17):21. https://doi.org/10.1002/marc.201900096

    Article  CAS  Google Scholar 

  11. Gu ZK, Dong YR, Xu SX, Wang LS, Liu Z (2021) Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting, prolonged retention, and tumor microenvironment-triggered release. Angew Chem Int Ed 60(5):2663–2667. https://doi.org/10.1002/anie.202012956

    Article  CAS  Google Scholar 

  12. Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B (2016) Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. Polym Adv Technol 27(9):1124–1142. https://doi.org/10.1002/pat.3754

    Article  CAS  Google Scholar 

  13. Hua ZD, Zhou S, Zhao MP (2009) Fabrication of a surface imprinted hydrogel shell over silica microspheres using bovine serum albumin as a model protein template. Biosens Bioelectron 25(3):615–622. https://doi.org/10.1016/j.bios.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  14. Lu Y, Li CX, Liu XH, Huang WQ (2002) Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers. J Chromatogr A 950(1–2):89–97. https://doi.org/10.1016/s0021-9673(02)00058-4

    Article  CAS  PubMed  Google Scholar 

  15. Mosbach K, Haupt K (1998) Some new developments and challenges in non-covalent molecular imprinting technology. J Mol Recognit 11(1–6):62–68. https://doi.org/10.1002/(sici)1099-1352(199812)11:1/6%3c62::Aid-jmr391%3e3.0.Co;2-5

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh RY, Tsai HA, Syu MJ (2006) Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 27(9):2083–2089. https://doi.org/10.1016/j.biomaterials.2005.09.024

    Article  CAS  PubMed  Google Scholar 

  17. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Progr 22(6):1474–1489. https://doi.org/10.1021/bp060122g

    Article  CAS  Google Scholar 

  18. Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26(4):218–224. https://doi.org/10.1016/j.tibtech.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  19. Li SW, Yang KG, Liu JX, Jiang B, Zhang LH, Zhang YK (2015) Surface-imprinted nanoparticles prepared with a his-tag-anchored epitope as the template. Anal Chem 87(9):4617–4620. https://doi.org/10.1021/ac5047246

    Article  CAS  PubMed  Google Scholar 

  20. Wu G, Li JY, Qu X, Zhang YX, Hong H, Liu CS (2015) Template size matched film thickness for effectively in situ surface imprinting: a model study of glycoprotein imprints. Rsc Adv 5(58):47010–47021. https://doi.org/10.1039/c5ra06454f

    Article  CAS  Google Scholar 

  21. Yang KG, Zhang LH, Liang Z, Zhang YK (2012) Protein-imprinted materials: rational design, application and challenges. Anal Bioanal Chem 403(8):2173–2183. https://doi.org/10.1007/s00216-012-5840-y

    Article  CAS  PubMed  Google Scholar 

  22. Liu JX, Deng QL, Tao DY, Yang KG, Zhang LH, Liang Z, Zhang YK (2014) Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum. Sci Rep 4:6. https://doi.org/10.1038/srep05487

    Article  CAS  Google Scholar 

  23. Moczko E, Guerreiro A, Caceres C, Piletska E, Sellergren B, Piletsky SA (2019) Epitope approach in molecular imprinting of antibodies. J Chromatogr B 1124:1–6. https://doi.org/10.1016/j.jchromb.2019.05.024

    Article  CAS  Google Scholar 

  24. Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG (2020) Progress and perspectives beyond traditional RAFT polymerization. Adv Sci 7(20):12. https://doi.org/10.1002/advs.202001656

    Article  CAS  Google Scholar 

  25. Yang KG, Li SW, Liu LK, Chen YW, Zhou W, Pei JQ, Liang Z, Zhang LH, Zhang YK (2019) Epitope imprinting technology: progress, applications, and perspectives toward artificial antibodies. Adv Mater 31(50):17. https://doi.org/10.1002/adma.201902048

    Article  CAS  Google Scholar 

  26. Yang KG, Liu JX, Li SW, Li QR, Wu Q, Zhou Y, Zhao Q, Deng N, Liang Z, Zhang LH, Zhang YK (2014) Epitope imprinted polyethersulfone beads by self-assembly for target protein capture from the plasma proteome. Chem Commun 50(67):9521–9524. https://doi.org/10.1039/c4cc03428g

    Article  CAS  Google Scholar 

  27. Yang YQ, He XW, Wang YZ, Li WY, Zhang YK (2014) Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens Bioelectron 54:266–272. https://doi.org/10.1016/j.bios.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  28. Xing R, Ma Y, Wang Y, Wen Y, Liu Z (2019) Specific recognition of proteins and peptides via controllable oriented surface imprinting of boronate affinity-anchored epitopes. Chem Sci 10(6):1831–1835. https://doi.org/10.1039/c8sc04169e

    Article  CAS  PubMed  Google Scholar 

  29. Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process—a first update. Aust J Chem 59(10):669–692. https://doi.org/10.1071/ch06250

    Article  CAS  Google Scholar 

  30. Xiao YH, Xiao R, Tang J, Zhu QK, Li XM, Xiong Y, Wu XW (2017) Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta 162:415–422. https://doi.org/10.1016/j.talanta.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  31. Montagna V, Haupt K, Gonzato C (2020) RAFT coupling chemistry: a general approach for post-functionalizing molecularly imprinted polymers synthesized by radical polymerization. Polyme Chem 11(5):1055–1061. https://doi.org/10.1039/c9py01629e

    Article  CAS  Google Scholar 

  32. Azizi A, Shahhoseini F, Bottaro CS (2020) Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.460534

    Article  PubMed  Google Scholar 

  33. Kuscuoglu CK, Guner H, Soylemez MA, Guven O, Barsbay M (2019) A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization. Sens Actuators B 296:12. https://doi.org/10.1016/j.snb.2019.126653

    Article  CAS  Google Scholar 

  34. Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z (2019) Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111729

    Article  PubMed  Google Scholar 

  35. Min Y, Jiang B, Wu C, Xia SM, Zhang XD, Liang Z, Zhang LH, Zhang YK (2014) 1.9 mu m superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. J Chromatogr A 1356:148–156. https://doi.org/10.1016/j.chroma.2014.06.049

    Article  CAS  PubMed  Google Scholar 

  36. Li QR, Yang KG, Liang Y, Jiang B, Liu JX, Zhang LH, Liang Z, Zhang YK (2014) Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy. Acs Appl Mater Interfaces 6(24):21954–21960. https://doi.org/10.1021/am5072783

    Article  CAS  PubMed  Google Scholar 

  37. Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264. https://doi.org/10.1016/j.bios.2016.08.047

    Article  CAS  PubMed  Google Scholar 

  38. Okan M, Duman M (2018) Functional polymeric nanoparticle decorated microcantilever sensor for specific detection of erythromycin. Sens Actuators B 256:325–333. https://doi.org/10.1016/j.snb.2017.10.098

    Article  CAS  Google Scholar 

  39. Qin YP, Wang HY, He XW, Li WY, Zhang YK (2018) Metal chelation dual-template epitope imprinting polymer via distillation-precipitation polymerization for recognition of porcine serum albumin. Talanta 185:620–627. https://doi.org/10.1016/j.talanta.2018.03.082

    Article  CAS  PubMed  Google Scholar 

  40. Moad G, Rizzardo E, Thang SH (2011) End-functional polymers, thiocarbonylthio group removal/transformation and reversible addition-fragmentation-chain transfer (RAFT) polymerization. Polym Int 60(1):9–25. https://doi.org/10.1002/pi.2988

    Article  CAS  Google Scholar 

  41. Gemici H, Legge TM, Whittaker M, Monteiro MJ, Perrier S (2007) Original approach to multiblock copolymers via reversible addition-fragmentation chain transfer polymerization. J Polym Sci Part A-1 Polym Chem 45(11):2334–2340. https://doi.org/10.1002/pola.21985

    Article  CAS  Google Scholar 

  42. Meng Y, Wei Z, Lu YL, Zhang LQ (2012) Structure, morphology, and mechanical properties of polysiloxane elastomer composites prepared by in situ polymerization of zinc dimethacrylate. Express Polym Lett 6(11):882–894. https://doi.org/10.3144/expresspolymlett.2012.94

    Article  CAS  Google Scholar 

  43. Zhao Q-Y, Zhao H-T, Yang X, Zhang H, Dong A-J, Wang J, Li B (2018) Selective recognition and fast enrichment of anthocyanins by dummy molecularly imprinted magnetic nanoparticles. J Chromatogr A 1572:9–19. https://doi.org/10.1016/j.chroma.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  44. Amornchaiyapitak C, Taweepreda W, Tangboriboonrat P (2008) Modification of epoxidised natural rubber film surface by polymerisation of methyl methacrylate. Eur Polym J 44(6):1782–1788. https://doi.org/10.1016/j.eurpolymj.2008.03.002

    Article  CAS  Google Scholar 

  45. Du CB, Hu XL, Guan P, Gao XM, Song RY, Li J, Qian LW, Zhang N, Guo LX (2016) Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 4(8):1510–1519. https://doi.org/10.1039/c5tb02633d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21804099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Li, X., Zhang, H. et al. Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 85, 743–754 (2022). https://doi.org/10.1007/s10337-022-04180-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04180-w

Keywords

Navigation