Skip to main content
Log in

Graphene Adsorbent-Based Solid-Phase Extraction for Aflatoxins Clean-Up in Food Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this research, graphene nanoparticles were used as an adsorbent for the extraction and pre-concentration of the aflatoxins (AFs) in rice and wheat samples. The graphene was synthesized according to the Hummer’s method, packed in empty SPE cartridges and different parameters affecting the efficiency of the process for the extraction of AFs were thoroughly investigated. The extracts were subsequently analyzed using high-performance liquid chromatography and fluorescence detection (HPLC–FLD). Under the optimized conditions, limits of detection of 0.63, 0.47, 0.62 and 0.83 ng g−1 and limits of quantification of 1.92, 2.65, 1.88 and 2.83 ng g−1 were obtained for AFs B1, B2, G1 and G2, respectively. The accuracy was estimated by determination of the relative recoveries (RR%) and acceptable values obtained. The RR% values of 75.88–113.30 and 70.61–110.75 were obtained in cereal samples and at the spiked level of 2 and 5 ng g−1, respectively. Within-laboratory relative standard deviations (%RSDs) for repeatability (n = 6) were in the range of 2.14–3.17. The proposed new method can be applied for the separation and pre-concentration of the mentioned AFs in food samples with satisfactory results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cano-Sancho G, Ramos AJ, Marín S, Sanchis V (2012) Food Control 26:282–286. https://doi.org/10.1016/j.foodcont.2012.01.052

    Article  CAS  Google Scholar 

  2. Hajare Shruti S, Hajare Sachin N, Sharma A (2005) J Food Sci 70:C29–C34. https://doi.org/10.1111/j.1365-2621.2005.tb09016.x

    Article  Google Scholar 

  3. Hiroshi A, Yukihiro G, Toshitsugu T, Masatake T (2001) J Chromatogr A 932:153–157. https://doi.org/10.1016/S0021-9673(01)01211-0

    Article  Google Scholar 

  4. Bhat R, Rai RV, Karim AA (2010) Compr Rev Food Sci Food Saf 9:57–81. https://doi.org/10.1111/j.1541-4337.2009.00094.x

    Article  CAS  Google Scholar 

  5. Eshaghi Z, Sorayaei H, Samadi F, Masrournia M, Bakherad Z (2011) J Chromatogr B 879:3034–3040. https://doi.org/10.1016/j.jchromb.2011.08.042

    Article  CAS  Google Scholar 

  6. Mahmoudi R, Norian R, Katiraee F, Alamoti MRP (2013) Int Food Res J 20:2901

    Google Scholar 

  7. Feizy J, Beheshti HR, Khoshbakht Fahim N, Fakoor Janati SS, Davari G (2010) Food Addit Contam Part B 3:263–267. https://doi.org/10.1080/19440049.2010.516456

    Article  CAS  Google Scholar 

  8. Reddy TV, Viswanathan L, Venkitasubramanian TA (1970) Anal Biochem 38:568–571. https://doi.org/10.1016/0003-2697(70)90487-2

    Article  CAS  PubMed  Google Scholar 

  9. Gourama H, Bullerman LB (1995) J Food Prot 58:1389–1394. https://doi.org/10.4315/0362-028x-58.12.1389

    Article  PubMed  Google Scholar 

  10. Joshua H (1993) J Chromatogr A 654:247–254. https://doi.org/10.1016/0021-9673(93)83367-2

    Article  CAS  Google Scholar 

  11. Vahl M, Jørgensen K (1998) Z Lebensmitteluntersuchung Forschung A 206:243–245. https://doi.org/10.1007/s002170050251

    Article  CAS  Google Scholar 

  12. Meirelles PG, Ono MA, Ohe MCT, Maroneze DM, Itano EN, Garcia GT, Sugiura Y, Ueno Y, Hirooka EY, Ono EYS (2006) Food Agric Immunol 17:79–89. https://doi.org/10.1080/09540100600688754

    Article  CAS  Google Scholar 

  13. Qian J, Ren C, Wang C, Chen W, Lu X, Li H, Liu Q, Hao N, Li H, Wang K (2018) Anal Chim Acta 1019:119–127. https://doi.org/10.1016/j.aca.2018.02.063

    Article  CAS  PubMed  Google Scholar 

  14. Castegnaro M, Tozlovanu M, Wild C, Molinié A, Sylla A, Pfohl-Leszkowicz A (2006) Mol Nutr Food Res 50:480–487. https://doi.org/10.1002/mnfr.200500264

    Article  CAS  PubMed  Google Scholar 

  15. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  16. Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Anal Chim Acta 691:6–17. https://doi.org/10.1016/j.aca.2011.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M (2013) Adv Coll Interface Sci 195–196:19–40. https://doi.org/10.1016/j.cis.2013.03.009

    Article  CAS  Google Scholar 

  18. Zhou M, Luo LL, Zhong SX, Yang JY, Chen JR (2014) Appl Mech Mater 455:7–10. https://doi.org/10.4028/www.scientific.net/AMM.455.7

    Article  CAS  Google Scholar 

  19. Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F (2013) Chem Soc Rev 42:794–830. https://doi.org/10.1039/C2CS35353A

    Article  CAS  PubMed  Google Scholar 

  20. Soldano C, Mahmood A, Dujardin E (2010) Carbon 48:2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058

    Article  CAS  Google Scholar 

  21. Yanwu Z, Shanthi M, Weiwei C, Xuesong L, Ji Won S, Jeffrey RP, Rodney SR (2010) Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  22. Qian L, Jianbo S, Guibin J (2012) Trends Anal Chem 37:1–11. https://doi.org/10.1016/j.trac.2012.03.011

    Article  CAS  Google Scholar 

  23. Pérez-López B, Merkoçi A (2012) Microchim Acta 179:1–16. https://doi.org/10.1007/s00604-012-0871-9

    Article  CAS  Google Scholar 

  24. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  25. Chun L, Gaoquan S (2012) Nanoscale 4:5549–5563. https://doi.org/10.1039/C2NR31467C

    Article  Google Scholar 

  26. Huang K-J, Jing Q-S, Wei C-Y, Wu Y-Y (2011) Spectrochim Acta Part A Mol Biomol Spectrosc 79:1860–1865. https://doi.org/10.1016/j.saa.2011.05.076

    Article  CAS  Google Scholar 

  27. Ke-Jing H, Sheng Y, Jing L, Zhi-Wei W, Cai-Yun W (2012) Microchim Acta 176:327–335. https://doi.org/10.1007/s00604-011-0719-8

    Article  CAS  Google Scholar 

  28. Jianbing W, Linyao C, Peipei M, Yanbin L, Huizhong W (2012) J Sep Sci 35:3586–3592. https://doi.org/10.1002/jssc.201200617

    Article  CAS  Google Scholar 

  29. Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) J Chromatogr A 1218:197–204. https://doi.org/10.1016/j.chroma.2010.11.022

    Article  CAS  PubMed  Google Scholar 

  30. Es’haghi Z, Beheshti HR, Feizy J (2014) J Sep Sci 37:2566–2573. https://doi.org/10.1002/jssc.201400260

    Article  CAS  PubMed  Google Scholar 

  31. Ran C, Chen D, Ma H, Jiang Y (2017) J Chromatogr B 1044–1045:120–126. https://doi.org/10.1016/j.jchromb.2017.01.001

    Article  CAS  Google Scholar 

  32. ISO (2005) General requirements for the competence of testing and calibration laboratories. ISO, Geneva

    Google Scholar 

  33. EURACHEMCITAC (2000) Quantifying Uncertainty in Analytical Measurement Guide. Edition S (ed) Laboratory of the Government Chemist, London

  34. Yukun W, Shutao G, Xiaohuan Z, Jingci L, Jingjun M (2012) Anal Chim Acta 716:112–118. https://doi.org/10.1016/j.aca.2011.12.007

    Article  CAS  Google Scholar 

  35. Ma X, Wang J, Wu Q, Wang C, Wang Z (2014) Food Anal Methods 7:1381–1386. https://doi.org/10.1007/s12161-013-9760-z

    Article  Google Scholar 

  36. Rodríguez LC, CampaTa AMG, Linares CJ, Ceba MR (1993) Anal Lett 26:1243–1258. https://doi.org/10.1080/00032719308019900

    Article  Google Scholar 

  37. Mateos R, Vera S, Díez-Pascual AM, San Andrés MP (2017) J Food Compos Anal 62:223–230. https://doi.org/10.1016/j.jfca.2017.07.006

    Article  CAS  Google Scholar 

  38. Qian L, Jianbo S, Jianteng S, Thanh W, Lixi Z, Guibin J (2011) Angew Chem Int Ed 50:5913–5917. https://doi.org/10.1002/anie.201007138

    Article  CAS  Google Scholar 

  39. Feizy J, Beheshti HR, Fakoor Janati SS, Khoshbakht Fahim N (2011) Food Addit Contam Part B 4:106–109. https://doi.org/10.1080/19393210.2011.561932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Iranian National Science Foundation (INSF) for supporting this work financially under the contract number 94/SS/45515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Feizy.

Ethics declarations

Conflict of interest

The authors acknowledge that there was no conflict of interest.

Ethical approval

Real samples were just food such as wheat and rice samples. Human samples have not been used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizy, J., Jahani, M. & Beigbabaei, A. Graphene Adsorbent-Based Solid-Phase Extraction for Aflatoxins Clean-Up in Food Samples. Chromatographia 82, 917–926 (2019). https://doi.org/10.1007/s10337-019-03725-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03725-w

Keywords

Navigation