Skip to main content
Log in

Comparison of Four Extraction Methods for the Determination of Veterinary Pharmaceuticals in Sediment

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this work extraction by agitation (EA), ultrasound solvent extraction (USE), microwave assisted extraction (MAE) and pressurized liquid extraction (PLE) followed by high performance liquid chromatography with diode array detector (HPLC–DAD) for the determination of eight veterinary pharmaceuticals from different structural groups including one macrolide (tylosine), three anthelmintics (albendazole, febantel and levamisole), two anesthetics (lidocaine and procaine) and two steroidal hormones (hydrocortisone and dexamethasone) in sediment is described. Selected pharmaceuticals are widely used in veterinary practice in Croatia and in the whole world. Since they belong to different structure groups the usage of routine methods is not effective for their extraction from a complex sediment sample. Also, until now no article has been published for systematic extraction of named pharmaceuticals from sediment sample by different extraction methods. EA, USE, MAE and PLE have been optimized regarding different characteristic parameters such as sediment mass, extraction solvent, solvent volume, agitation frequency, power of ultrasound bath, extraction duration, extraction temperature and contact time between sediment and solvent. After extraction, pharmaceuticals were analyzed by HPLC–DAD using C18 stationary phase. HPLC–DAD–EA, HPLC-USE, HPLC–DAD-MAE and HPLC–DAD–PLE methods were validated in terms of selectivity, specificity, linearity, sensitivity, method detection limit (MDL) and quantification (MQL), repeatability, recovery and stability of a standard solution. Recoveries of selected pharmaceuticals from spiked sediment samples were generally higher than 50 %. However, dexamethasone and hydrocortisone showed lower recoveries due to their significantly different molecule structure. This paper shows the ability of simultaneous extraction and analysis of all selected pharmaceuticals by four different extraction methods in complex sediment sample followed by relatively affordable and sensitive HPLC–DAD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilga J, Kot-Wasik A, Namiésnik J (2008) J Chromatogr Sci 46:601–608

    Article  CAS  Google Scholar 

  2. Mutavdžić Pavlović D, Babić S, Horvat AJM, Kaštelan-Macan M, (2007) Trends Anal Chem 26:1062-1075

  3. Blackwell PA (2004) Holten Lützhøft HCH, Ma HP, Sørensen BH, Boxall ABA, Kay P. Talanta 64:1058

    Article  CAS  Google Scholar 

  4. Peysson W, Vulliet E (2013) J Chromatogr A 1290:46–61

    Article  CAS  Google Scholar 

  5. Ho YB, Zakaria MP, Latif PA, Saari N (2014) Sci Total Environ 488–489:261–267

    Article  Google Scholar 

  6. Salvia MV, Vulliet E, Wiest L, Baudot R, Cren-Olivé C (2012) J Chromatogr A 1245:122–133

    Article  CAS  Google Scholar 

  7. Babić S, Ašperger D, Mutavdžić D, Horvat AJM, Kaštelan-Macan M (2006) Talanta 70:732–738

    Article  Google Scholar 

  8. da Silva Ferreira (2011) B, Jelic A, Lόpez R, Mozeto AA. Chemosphere 85:1331–1339

    Article  Google Scholar 

  9. Horvat AJM, Petrović M, Babić S (2012) Mutavdžić Pavlović D, Ašperger D, Pelko S, Mance AD, Kaštelan-Macan M. Trends Anal Chem 3:61–84

    Article  Google Scholar 

  10. Babić S, Horvat AJM (2007) Mutavdžić Pavlović D, Kaštelan-Macan M. Trends Anal Chem 26:1043–1061

    Article  Google Scholar 

  11. Nieto A, Borrull F, Pocurull E, Marce RM (2010) Trends Anal Chem 29:752–764

    Article  CAS  Google Scholar 

  12. Jacobsen AM, Halling-Sørensen B, Ingerslev F (2004) Honoré Hansen S. J Chromatogr A 1038:157–170

    Article  CAS  Google Scholar 

  13. Solliec M, Massé D, Sauvé S (2014) Talanta 128:23–30

    Article  CAS  Google Scholar 

  14. Zhou L, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) J Chromatogr A 1244:123–138

    Article  CAS  Google Scholar 

  15. Ho YB, Zakaria MP, Latif PA, Saari N (2012) J Chromatogr A 1262:160–168

    Article  CAS  Google Scholar 

  16. Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y (2012) Chemosphere 86:665–671

    Article  CAS  Google Scholar 

  17. Cai-Ming T, Qiu-Xin H, Yi-Yi Y, Xian-Zhi P (2009) Chin J Anal Chem 37:1119–1124

    Article  Google Scholar 

  18. Kemper N, Färber H, Skutlarek D, Krieter J (2008) Agr Water Manage 95:1288–1292

    Article  Google Scholar 

  19. Schlüsener MP, Spiteller M, Bester K (2003) J Chromatogr A 1003:21–28

    Article  Google Scholar 

  20. Draisci R, Palleschi L, Ferretti E, Achene L, Cecilia A (2001) J Chromatogr A 926:97–104

    Article  CAS  Google Scholar 

  21. Rabølle M, Spliid NH (2000) Chemosphere 40:715–722

    Article  Google Scholar 

  22. Mutavdžić-Pavlović D, Pinušić T, Periša M, Babić S (2012) J Chromatogr A 1258:1–15

    Article  Google Scholar 

  23. Kitzman D, Cheng KJ, Fleckenstein L (2002) J Pharm Biomed Anal 30:801–813

    Article  CAS  Google Scholar 

  24. Zrnčić M, Gros M, Babić S, Kaštelan-Macan M, Barcelo D, Petrović M (2014) Chemosphere 99:224–232

    Article  Google Scholar 

  25. Petrović M, Škrbić B, Živančev J, Ferrando-Climent L, Barcelo D (2014) Sci Total Environ 468–469:415–428

    Article  Google Scholar 

  26. Qin WW, Jiao Z, Zhong M, Shia X, Zhang J, Li Z, Cui X (2010) J Chromatogr A 878:1185–1189

    CAS  Google Scholar 

  27. Herrero P, Borrull F, Marcé RM, Pocurull E (2013) Talanta 103:186–193

    Article  CAS  Google Scholar 

  28. Liu S, Ying GG, Zhao JL, Chen F, Yang B, Zhou LJ, Lai H (2011) J Chromatogr A 1218:1367–1378

    Article  CAS  Google Scholar 

  29. Cerqueira MBR, Guilherme JR, Caldas SS, Martins ML, Zanella R, Primel EG (2014) Chemosphere 107:74–82

    Article  CAS  Google Scholar 

  30. Konieczka P, Namiésnik J (2010) J Chromatogr A 1217:882–891

    Article  CAS  Google Scholar 

  31. Bendicho C, De La Calle I, Pena F, Costas M, Cabaleiro N, Lavilla I (2012) Trends Anal Chem 31:50–60

    Article  CAS  Google Scholar 

  32. Tobiszewski M, Mechlińska A, Zygmunt B, Namiésnik J (2009) Trends Anal Chem 28:943–951

    Article  CAS  Google Scholar 

  33. Gałuszka A, Migaszewski Z, Namiésnik J (2013) Trends Anal Chem 50:78–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Ašperger.

Ethics declarations

Conflict of interest

All authors of this manuscript declare that have no conflict of interest.

Statement about involving Human and/or Animals participants

This research does not contain any studies with humans and animals performed by any of the authors.

Statement about Informed consent

Manuscript research does not involve human subjects so formal consent is not required. No procedure performed in this study was in conflict with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drljača, D., Ašperger, D., Ferenčak, M. et al. Comparison of Four Extraction Methods for the Determination of Veterinary Pharmaceuticals in Sediment. Chromatographia 79, 209–223 (2016). https://doi.org/10.1007/s10337-015-3017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-3017-5

Keywords

Navigation