Skip to main content
Log in

Chromatomembrane Headspace Analysis of Aqueous Solutions at Elevated Temperatures

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Both theoretically and experimentally, the effect of temperature has been studied and assessed on analytical characteristics of continuous chromatomembrane gas extraction of volatile organic compounds from aqueous solutions with the aim of their subsequent gas chromatographic determination. It has been found that a rise of temperature up to 80 °C enables reduction of the detection limits of alcohols, ketones, and esters by a factor of 10 to 20. If a water vapor condenser is used in the extractant gas line, then the repeatability of results does not depend on temperature. The conditions have been optimized for the continuous headspace chromatomembrane analysis in combination with gas adsorption (purge and trap) concentration of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitra S (2003) Sample preparation techniques in analytical chemistry. John Wiley & Sons, New York

    Book  Google Scholar 

  2. Snow NH, Slack GC (2002) Head-space analysis in modern gas chromatography. Trends Anal Chem 21:608–617. doi:10.1016/S0165-9936(02)00802-6

    Article  CAS  Google Scholar 

  3. Lambropoulou DA, Konstantinou IK, Albanis TA (2007) Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices. J Chromatogr A 1152:70–96. doi:10.1016/j.chroma.2007.02.094

    Article  CAS  Google Scholar 

  4. Lara-Gonzalo A, Sanchez-Urıa JE, Segovia-Garcıa E, Sanz-Medel A (2008) Critical comparison of automated purge and trap and solid-phase microextraction for routine determination of volatile organic compounds in drinking waters by GC-MS. Talanta 74:1455–1462. doi:10.1016/j.talanta.2007.09.036

    Article  CAS  Google Scholar 

  5. Ueta I, Razak NA, Mizuguchi A, Kawakubo S, Saito Y, Jinno K (2013) Needle-type extraction device for the purge and trap analysis of 23 volatile organic compounds in tap water. J Chromatogr A 1317:211–216. doi:10.1016/j.chroma.2013.07.01

    Article  CAS  Google Scholar 

  6. Brown MA, Miller S, Emmert GL (2007) On-line purge and trap gas chromatography for monitoring of trihalomethanes in drinking water distribution systems. Anal Chim Acta 592:154–161. doi:10.1016/j.aca.2007.04.020

    Article  CAS  Google Scholar 

  7. Saridara C, Brukh R, Mitra S (2006) Development of continuous on-line purge and trap analysis. J Sep Sci 29:446–452. doi:10.1002/jssc.200401897

    Article  CAS  Google Scholar 

  8. Auer NR, Manzke BU, Schulz-Bull DE (2006) Development of a purge and trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water. J Chromatogr A 1131:24–36. doi:10.1016/j.chroma.2006.07.043

    Article  CAS  Google Scholar 

  9. Jochmann MA, Yuan X, Schilling B, Schmidt TC (2008) In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. J Chromatogr A 1179:96–105

    Article  CAS  Google Scholar 

  10. Ridgway K, Lalljie SPD, Smith RM (2007) Use of in-tube sorptive extraction techniques for determination of benzene, toluene, ethylbenzene and xylenes in soft drinks. J Chromatogr A 174:20–26

    Article  Google Scholar 

  11. Moskvin LN (1994) Chromatomembrane method for the continuous separation of substances. J Chromatogr A 669:81–87. doi:10.1016/0021-9673(94)80339-0

    Article  Google Scholar 

  12. Moskvin LN, Rodinkov OV (1996) Continuous chromatomembrane headspace analysis. J Chromatogr A 725:351–359. doi:10.1016/0021-9673(95)00991-4

    Article  CAS  Google Scholar 

  13. Supriyanto G, Simon J (2005) The chromatomembrane method used for sample preparations in the spectrophotometric determination of zinc and copper in pharmaceuticals. Talanta 68:318–322. doi:10.1016/j.talanta.2005.08.052

    Article  CAS  Google Scholar 

  14. Moskvin LN, Simon J (2006) Gas/liquid and liquid/liquid solvent extraction in flow analysis with the chromatomembrane cell. Sensors 6:1321–1332

    Article  CAS  Google Scholar 

  15. Wei Y, Oshima M, Simon J, Moskvin LN, Motomizu S (2002) Absorption, concentration and determination of trace amounts of air pollutants by flow injection method coupled with a chromatomembrane cell system: application to nitrogen dioxide determination. Talanta 58:1343–1355. doi:10.1016/S0039-9140(02)00422-8

    Article  CAS  Google Scholar 

  16. Sritharathikhun P, Oshima M, Motomizu S (2005) On-line collection/concentration of trace amounts of formaldehyde in air with chromatomembrane cell and its sensitive determination by flow injection technique coupled with spectrophotometric and fluorometric detection. Talanta 67:1014–1022. doi:10.1016/j.talanta.2005.04.037

    Article  CAS  Google Scholar 

  17. Moskvin LN, Rodinkov OV (2002) Chromatomembrane preconcentration of trace impurities of organic pollutants from natural waters and atmosphere air. J Anal Chem 57:894–899

    Article  CAS  Google Scholar 

  18. Moskvin LN, Rodinkov OV (2012) Chromatomembrane methods: physicochemical principles, analytical and technological possibilities. Russ Chem Bull 61:723–740

    Article  CAS  Google Scholar 

  19. Rodinkov OV, Smirnova EA, Moskvin LN (2015) Effect of temperature on the performance characteristics of continuous chromatomembrane gas extraction. J Anal Chem 70:87–91

    Article  CAS  Google Scholar 

  20. Rodinkov OV, Moskvin LN (2005) Vas’kova EA Optimization of the porous structure of a hydrophobic matrix for chromatomembrane mass-exchange processes. Russ J Phys Chem 79:453–456

    CAS  Google Scholar 

  21. Rodinkov OV, Moskvin LN, Maiorova NA (2005) Operation rates of different schemes of continuous chromatomembrane gas extraction. J Anal Chem 60:727–731. doi:10.1007/s10809-005-0171-1

    Article  CAS  Google Scholar 

  22. Rodinkov OV, Bugaichenko AS, Vlasov AYu (2014) Compositional surface-layered sorbents for pre-concentration of organic substances in the air analysis. Talanta 119:407–411. doi:10.1016/j.talanta.2013.11.040

    Article  CAS  Google Scholar 

  23. Ras MR, Borrull F, Marcé RM (2008) Determination of volatile organic sulfur compounds in the air at sewage management areas by thermal desorption and gas chromatography–mass spectrometry. Talanta 74:562–569. doi:10.1016/j.talanta.2007.06.017

    Article  CAS  Google Scholar 

  24. Kozlowski E, Sienkowska-Zyskowska E, Grecki T (1991) Continuous flow thin-layer headspace (TLHS) analysis. Fresenius J Anal Chem 339(19):882–885

    Article  CAS  Google Scholar 

  25. Campillo N, Aguinaga N, Vinas P, Lopez-Garsia I, Hernandez-Condoba M (2004) Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection. Anal Chim Acta 525:273–280. doi:10.1016/j.aca.2004.07.054

    Article  CAS  Google Scholar 

  26. Martinez E, Lacorde S, Liobet I, Viana P, Barcelo D (2002) Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography–mass spectrometry. J Chromatogr A 959:181–190. doi:10.1016/S0021-9673(02)00439-9

    Article  CAS  Google Scholar 

  27. Allonier A-S, Khalanski M, Bermond A, Camel V (2000) Determination of trihalomethanes in chlorinated sea water samples using a purge-and-trap system coupled to gas chromatography. Talanta 51:467–477. doi:10.1016/S0039-9140(99)00296-9

    Article  CAS  Google Scholar 

  28. Ioffe BV, Vitenberg AG (1984) Head space analysis and related methods in gas chromatography. Wiley, New-York

    Google Scholar 

  29. Vitenberg AG (2003) Equilibrium model in the description of gas extraction and headspace analysis. J Anal Chem 58:2–15. doi:10.1023/A:1021873828994

    Article  CAS  Google Scholar 

  30. Vitenberg AG, Novikaite NV, Kostkina MI (1993) High-temperature gas-chromatographic headspace-analysis of volatile polar impurities in aqueous solutions. Chromatographia 35:661–666

    Article  CAS  Google Scholar 

  31. Konieczka P, Namiesnik J (2010) Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A 1217:882–891

    Article  CAS  Google Scholar 

  32. Miller JC, Miller JN (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Pearson Education Limited, Harlow

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Fund for Basic Research (Grant 15-03-05151a), the equipment for the work was made available by the Educational Resource Center (Section “Chemistry”) of the St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Moskvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodinkov, O.V., Moskvin, L.N., Viktorova, M.I. et al. Chromatomembrane Headspace Analysis of Aqueous Solutions at Elevated Temperatures. Chromatographia 78, 1211–1220 (2015). https://doi.org/10.1007/s10337-015-2926-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2926-7

Keywords

Navigation