Skip to main content
Log in

Cyanobiphenyl-Mesogened Liquid Crystalline Polymer Bonded on Silica as the Stationary Phase with Shape and Polarity Recognition for LC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Cyanobiphenyl-mesogened liquid crystalline polymer is bonded on silica by surface-initiated atom transfer radical polymerization and is used as the stationary phase for liquid chromatography. Various instrumental analyses such as elemental analysis, X-ray photoelectron spectroscopy and differential scanning calorimetry were used for its characterization. The stationary phase exhibits multiple characteristics of low hydrophobicity, low hydrophobic selectivity, polarity recognition and shape selectivity in the separation of polyaromatic hydrocarbons and polar neural aromatic compounds. Temperature and mobile phase composition were confirmed to have effects on the chromatographic behavior. Isomers of polyaromatic hydrocarbons and carotenes are well separated on the stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. “12.01”, “1.01”, “86.21”, “150.0”, “14.01”, “419.6” are the atomic/molecular weight of carbon atom, hydrogen atom, APS molecular fragment, BiBB molecular fragment and 11-(4′-Cyanophenyl-4″-phenoxy)undecyl acrylate, respectively. For each equation, the expression up the slash on the left stands for the mass of the element which matches the content on the right (see Table 1, elemental analysis) and the expression for division is the mass of the modified silica.

References

  1. Kelker H (1963) Z Anal Chem 198:254. doi:10.1007/BF00486441

    Article  CAS  Google Scholar 

  2. Witkiewicz Z (1982) J Chromatogr 251:331. doi:10.1016/S0021-9673(00)87023-5

    Article  Google Scholar 

  3. Naikwadi KP, McGovern AM, Karasek FW (1987) Can J Chem 65:970. doi:10.1139/v87-165

    Article  CAS  Google Scholar 

  4. Witkiewicz Z, Oszczudłowski J, Repelewicz M (2005) J Chromatogr A 1062:155–174. doi:10.1016/j.chroma.2004.11.042

    Article  CAS  Google Scholar 

  5. Terrien I, Achard MF, Felix G, Hardouin F (1998) J Chromatogr A 810:19–31. doi:10.1016/S0021-9673(98)00198-8

    Article  CAS  Google Scholar 

  6. Klein BH, Springer J (1991) J Liq Chromatogr 14:1519–1538. doi:10.1080/01483919108049633

    Article  CAS  Google Scholar 

  7. Klein BH, Springer J (1991) J Liq Chromatogr 14:1539–1559. doi:10.1080/01483919108049634

    Article  CAS  Google Scholar 

  8. Takafuji M, Rahman MM, Ansarian HR, Derakhshan M, Sakurai T, Ihara H (2005) J Chromatogr A 1074:223–228. doi:10.1016/j.chroma.2005.03.090

    Article  CAS  Google Scholar 

  9. Gritti F, Terrien I, Menu S, Dufourc EJ, Felix G, Achard MF, Hardouin F (2001) J Chromatogr A 922:37–50. doi:10.1016/S0021-9673(01)00886-X

    Article  CAS  Google Scholar 

  10. Gritti F, Felix G, Achard MF, Hardouin F (2001) J Chromatogr A 922:51–61. doi:10.1016/S0021-9673(01)00887-1

    Article  CAS  Google Scholar 

  11. Gritti F, Felix G, Achard MF, Hardouin F (2000) J Chromatogr A 897:131–143. doi:10.1016/S0021-9673(00)00765-2

    Article  CAS  Google Scholar 

  12. Gritti F, Felix G, Achard MF, Hardouin F (2001) J Chromatogr A 913:147–157. doi:10.1016/S0021-9673(00)01091-8

    Article  CAS  Google Scholar 

  13. Gritti F, Felix G (2002) Chromatographia 55:523. doi:10.1007/BF02492897

    Article  CAS  Google Scholar 

  14. Gritti F, Felix G (2002) Chromatographia 56:9. doi:10.1007/BF02490240

    Article  CAS  Google Scholar 

  15. Gritti F, Sourigues S, Felix G (2002) Chromatographia 55:149. doi:10.1007/BF02492135

    Article  CAS  Google Scholar 

  16. Gritti F, Felix G (2001) Chromatographia 53:201. doi:10.1007/BF02491571

    Article  CAS  Google Scholar 

  17. Sander LC, Wise SA (1993) J Chromatogr A 656:335–351. doi:10.1016/0021-9673(93)80808-L

    Article  CAS  Google Scholar 

  18. Sander LC, Lippa KA, Wise SA (2005) Anal Bioanal Chem 382:646–668. doi:10.1007/s00216-005-3127-2

    Article  CAS  Google Scholar 

  19. Ferroukhi O (2000) Chromatographia 51:701. doi:10.1007/BF02505408

    Article  CAS  Google Scholar 

  20. Shundo A, Sakurai T, Takafuji M, Nagaoka S, Ihara H (2005) J Chromatogr A 1073:169–174. doi:10.1016/j.chroma.2004.08.062

    Article  CAS  Google Scholar 

  21. Mallik AK, Rahman MM, Czaun M, Takafuji M, Ihara H (2008) J Chromatogr A 1187:119–127. doi:10.1016/j.chroma.2008.02.011

    Article  CAS  Google Scholar 

  22. Matyjaszewski K, Xia J (2001) Chem Rev 101:2921–2990. doi:10.1021/cr940534g

    Article  CAS  Google Scholar 

  23. Edmondson S, Osborne VL, Huck WTS (2004) Chem Soc Rev 33:14–22. doi:10.1039/b210143m

    Article  CAS  Google Scholar 

  24. He X, Yang W, Pei X (2008) Macromolecules 41:4615–4621. doi:10.1021/ma702389y

    Article  CAS  Google Scholar 

  25. Zhang K, Li H, Zhang H, Zhao S, Wang D, Wang J (2006) Mater Chem Phys 96:477–482. doi:10.1016/j.matchemphys.2005.07.070

    Article  CAS  Google Scholar 

  26. Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Wang X, Zhou Q (2004) Liquid crystalline polymers. World Scientific Publishing, Singapore

    Google Scholar 

  28. Shoichi M, Ichioshi T (1983) New technology in liquid crystals. Kogyo Chosakai Publishing, Tokyo

    Google Scholar 

  29. Kasko AM, Heintz AM, Pugh C (1998) Macromolecules 31:256–271. doi:10.1021/ma971279f

    Article  CAS  Google Scholar 

  30. Shibaev VP, Plate NA (1984) Adv Polym Sci 60:173. doi:10.1007/3-540-12994-4_4

    Google Scholar 

  31. Kasko AM, Grunwald SR, Pugh C (2002) Macromolecules 35:5466–5474. doi:10.1021/ma020242e

    Article  CAS  Google Scholar 

  32. Pesek J (1989) Chromatographia 27:559. doi:10.1007/BF02258978

    Article  CAS  Google Scholar 

  33. Schoenmakers PJ (1986) Optimization of chromatographic selectivity: a guide to method development. Elsevier, Amsterdam, p 67

    Google Scholar 

  34. Tran JV, Molander P, Greibrokk T, Lundanes E (2001) J Sep Sci 24:930–940. doi:10.1002/1615-9314(20011201)24:12<930:AID-JSSC930>3.0.CO;2-2

    Article  CAS  Google Scholar 

  35. Engelhardt H, Jungheim M (1990) Chromatographia 29:59–68. doi:10.1007/BF02261141

    Article  CAS  Google Scholar 

  36. Tanaka N (1989) J Chromatogr Sci 27:721–728

    Google Scholar 

  37. Galushko SV (1993) Chromatographia 36:39. doi:10.1007/BF02263833

    Article  CAS  Google Scholar 

  38. Walters MJ (1987) J Assoc Off Anal Chem 70:465

    CAS  Google Scholar 

  39. Claessens HA, van Straten MA, Cramers CA, Jezierska M, Buszewski B (1998) J Chromatogr A 826:135–156. doi:10.1016/S0021-9673(98)00749-3

    Article  CAS  Google Scholar 

  40. Yalkowsky SH, Valvani SC (1976) J Med Chem 19:727. doi:10.1021/jm00227a031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 20875096 and No. 20905072) and the Technology R&D Program of Gansu Province of China (No. 0804GKCA034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Wang, L., Li, J. et al. Cyanobiphenyl-Mesogened Liquid Crystalline Polymer Bonded on Silica as the Stationary Phase with Shape and Polarity Recognition for LC. Chromatographia 73, 5–16 (2011). https://doi.org/10.1007/s10337-010-1834-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-010-1834-0

Keywords

Navigation