Skip to main content
Log in

Incubation temperature does not explain variation in the embryo development periods in a sample of Neotropical passerine birds

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Growth of avian embryos depends on heat transferred from incubating parents. Parental behavior, including nest characteristics, can influence the length of the incubation period by varying the temperature of incubated eggs, the length of parental absences from the nest, and the rate of egg cooling during absences. Reduced parental attendance in response to risk of predation at the nest has been proposed as an explanation for the longer incubation periods of many tropical birds compared to temperate species. We incubated the eggs of eight species of tropical passerine birds, with natural incubation periods between 12 and 19 days, at the same constant temperature, thereby removing variation in incubation temperature and the cooling periods that eggs might otherwise experience when parents take recesses from incubation. If differences in egg temperature, reflecting parental behavior, were responsible for variation in incubation periods, incubation under constant conditions should reduce or eliminate this variation. Constant egg warming did not reduce time to hatch in species with long incubation periods. Instead, it prolonged embryo development in species with shorter natural periods by up to 2 days, and had no effect on species with longer natural periods. Thus, the longer incubation periods of some tropical birds appear to reflect intrinsic differences in the embryo development program rather than extrinsic factors related to parental incubation behavior.

Zusammenfassung

Konstante Bebrütung beschleunigt nicht die Embryonalentwicklung bei neotropischen Singvogelarten

Das Wachstum von Vogelembryonen hängt von der durch den brütenden Altvogel erzeugten Wärme ab. Das elterliche Verhalten inklusive der Nesteigenschaften kann die Länge der Inkubationsphase durch variierende Temperaturen der bebrüteten Eier, durch die Länge der Abwesenheitsphasen der Eltern vom Gelege sowie durch die Auskühlung der Eier während dieser Abwesenheitsphasen beeinflussen. Eine verringerte elterliche Nestbesetzung infolge des Prädationsrisikos auf dem Nest könnte eine Erklärung liefern für längere Inkubationszeiten bei vielen tropischen Vogelarten im Vergleich zu Arten der gemäßigten Zonen. Wir untersuchten die Embryonalentwicklung von acht tropischen Singvogelarten und bebrüteten deren Eier mit normalen Inkubationszeiten von 12 bis 19 Tagen bei konstanter Temperatur. Damit konnten Schwankungen der Bebrütungstemperatur und ein Auskühlen der Eier vermieden werden, was unter natürlichen Bedingungen passieren kann, wenn Altvögel die Bebrütung unterbrechen. Wenn Unterschiede in der Eiertemperatur, ausgelöst durch das elterliche Bebrütungsverhalten, verantwortlich sind für Schwankungen der Gesamtinkubationszeit, dann sollte eine Bebrütung unter konstanten Bedingungen diese Schwankungen reduzieren oder eliminieren. Bei Arten mit langen Inkubationszeiten hat eine konstante Gelegetemperatur nicht zu einem früheren Schlupf der Eier geführt. Stattdessen hat sich die Embryonalentwicklung bei Arten mit kurzen Bebrütungszeiten bis zu zwei Tage verlängert und hatte keinen Effekt bei Arten mit längeren Inkubationszeiten. Demnach scheinen bei einigen tropischen Vogelarten die längeren Inkubationszeiten eher intrinsische Unterschiede in der Embryonalentwicklung zu reflektieren, als extrinsische Faktoren im Zusammenhang mit dem elterlichen Inkubationsverhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin SH, Hau M, Robinson WD (2013) Effect of photoperiod on incubation period in a wild passerine, Sylvia atricapilla. J Avian Biol (in press)

  • Baggott GK, Deeming DC, Latter GV (2002) Electrolyte and water balance of the early avian embryo: effects of egg turning. Avian Poult Biol Rev 13:105–119

    Article  Google Scholar 

  • Brawn J, Angehr G, Davros N, Robinson WD, Styrsky JN, Tarwater C (2011) Sources of variation in the nesting success of understory tropical birds. J Avian Biol 42:61–68

    Article  Google Scholar 

  • Chalfoun AD, Martin TE (2007) Latitudinal variation in avian incubation attentiveness and a test of the food limitation hypothesis. Anim Behav 73:579–585

    Article  Google Scholar 

  • Cooper CB, Voss MA, Ardia DR, Austin SH, Robinson WD (2011) Light increases the rate of embryonic development: implications for latitudinal trends in incubation period. Funct Ecol 25:769–776

    Article  Google Scholar 

  • Deeming DC (2002) Avian incubation: behaviour, environment, and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Drent RH (1970) Functional aspects of incubation in the Herring Gull. Behaviour 17:1–132

    Google Scholar 

  • Kern MD, Cowie RJ (1995) Humidity levels in Pied Flycatcher nests measured using capsule hygrometers. Auk 112:564–570

    Google Scholar 

  • Kern MD, Cowie RJ (2000) Female pied flycatchers fail to respond to variations in nest humidity. Comp Biochem Physiol Part A 127:113–119

    Article  CAS  Google Scholar 

  • Kuehler C, Good J (1990) Artificial incubation of bird eggs at the Zoological Society of San Diego. Int Zoo Yearb 29:118–136

    Google Scholar 

  • Landauer W (1967) The hatchability of chicken eggs an influenced by environment and heredity monographs of the Storrs agricultural experiment station. University of Connecticut, Connecticut

    Google Scholar 

  • Lundy H (1969) A review of the effects of temperature, humidity, turning and gaseous environment in the incubator on the hatchability off the hen’s egg. In: Carter TC, Freeman BH (eds) The fertility and hatchability of the Hen’s egg. Oliver and Boyd, Edinburgh, pp 143–176

    Google Scholar 

  • Martin TE (2002) A new view of avian life-history evolution tested on an incubation paradox. Proc R Soc Lond B 269:309–316

    Article  Google Scholar 

  • Martin TE, Schwabl H (2008) Variation in maternal effects and embryonic development rates among passerine species. Philos Trans R Soc Lond B 363:1663–1674

    Article  Google Scholar 

  • Martin T, Auer SK, Bassar RD, Niklison AM, Lloyd P (2007) Geographic variation in avian incubation periods and parental influences on embryonic temperature. Evolution 61:2558–2569

    Article  PubMed  Google Scholar 

  • Martin TE, Ton R, Niklison A (2013) Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate. Ecol Lett 16:738–745

    Article  PubMed  Google Scholar 

  • Olsen GH, Club SL (1997) Embryology, incubation and hatching. In: Altman SLCRB, Dorrestein GM, Quesenberry K (eds) Avian medicine and surgery. W. B. Saunders Company, New York, pp 54–71

    Google Scholar 

  • Rahn H, Ackerman RA, Paganelli CV (1977) Humidity in the avian nest and egg water loss during incubation. Physiol Zool 50:269–283

    Google Scholar 

  • Ricklefs RE (1969) The nesting cycle of songbirds in tropical and temperative regions. Living Bird 8:165–175

    Google Scholar 

  • Ricklefs RE (1977) Reactions of some Panamanian birds to human intrusion at the nest. Condor 79:376–379

    Article  Google Scholar 

  • Ricklefs RE (1992) Embryonic development period and the prevalence of avian blood parasites. Proc Natl Acad Sci USA 89:4722–4725

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (1993) Sibling competition, hatching asynchrony, incubation period, and lifespan in altricial birds. Curr Ornithol 11:199–276

    Article  Google Scholar 

  • Ricklefs RE, Brawn JD (2013) Nest attentiveness in several Neotropical suboscine passerine birds with long incubation periods. J Ornithol 154:145–154

    Article  Google Scholar 

  • Robinson WD, Brawn JD, Robinson SK (2000a) Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecol Monogr 70:209–235

    Article  Google Scholar 

  • Robinson WD, Robinson TR, Robinson SK, Brawn JD (2000b) Nesting success of understory forest birds in central Panama. J Avian Biol 31:151–164

    Article  Google Scholar 

  • Robinson WD, Styrsky JD, Payne BJ, Harper RG, Thompson CF (2008) Why are incubation periods longer in the tropics? A common-garden experiment with house wrens reveals it is all in the egg. Am Nat 171:532–535

    Article  PubMed  Google Scholar 

  • Romanoff AL (1929) Effect of humidity on the growth, calcium metabolism, and mortality of the chick embryo. J Exp Zool 54:343–348

    Article  CAS  Google Scholar 

  • Romanoff AL (1930) Biochemistry and biophysics of the development of hen’s egg. Mem Cornell Univ Agric Exp Stn 132:1–27

    Google Scholar 

  • Rompré GR, Robinson WD (2008) Predation, nest attendance, and long incubation periods of two Neotropical antbirds. Ecotropica 14:81–87

    Google Scholar 

  • Shutze JV, Lauber JK, Kato M, Wilson WO (1962) Influence of incandescent and colored light on chicken embryos during incubation. Nature 196:594–595

    Article  CAS  PubMed  Google Scholar 

  • Tieleman BI, Williams JB, Ricklefs RE (2004) Nest attentiveness and egg temperature do not explain the variation in incubation periods in tropical birds. Funct Ecol 18:571–577

    Article  Google Scholar 

  • Wetherbee D, Wetherbee N (1961) Artificial incubation of eggs of various bird species and some attributes of neonates. Bird Banding 32:141–159

    Article  Google Scholar 

  • Wiersma P, Munoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104:9340–9345

    Article  CAS  PubMed  Google Scholar 

  • Wikelski M, Hau E, Robinson WD, Wingfield JC (2003) Reproductive seasonality of seven Neotropical passerine species. Condor 105:683–695

    Article  Google Scholar 

Download references

Acknowledgments

For their help in the field, we thank Lisa Miller, David Bradley, Ruby Zambrano, Betzi Perez, BriAnne Addison, and Rebecca Gamboa. We were supported by NSF (IBN-0212587). Smithsonian Tropical Research Institute provided logistical support. Egg handling was approved by Oregon State University Animal Care Protocol 3212 and permitted by Republic of Panama Autoridad Nacional del Ambiente (ANAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Douglas Robinson.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, W.D., Austin, S.H., Robinson, T.R. et al. Incubation temperature does not explain variation in the embryo development periods in a sample of Neotropical passerine birds. J Ornithol 155, 45–51 (2014). https://doi.org/10.1007/s10336-013-0985-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0985-9

Keywords

Navigation