Skip to main content
Log in

Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This study aims to compare an electrocardiogram (ECG)-gated four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI) technique and computational fluid dynamics (CFD) using variables controlled in a laboratory environment to minimize bias factors.

Materials and methods

Data from 4D PC-MRI were compared with computational fluid dynamics using steady and pulsatile flows at various inlet velocities. Anatomically realistic models for a normal aorta, a penetrating atherosclerotic ulcer, and an abdominal aortic aneurysm were constructed using a three-dimensional printer.

Results

For the normal aorta model, the errors in the peak and the average velocities were within 5%. The peak velocities of the penetrating atherosclerotic ulcer and the abdominal aortic aneurysm models displayed a more extensive range of differences because of the high-speed and vortical fluid flows generated by the shape of the blood vessel. However, the average velocities revealed only relatively minor differences.

Conclusions

This study compared the characteristics of PC-MRI and CFD through a phantom study that only included controllable experimental parameters. Based on these results, 4D PC-MRI and CFD are powerful tools for analyzing blood flow patterns in vivo. However, there is room for future developments to improve velocity measurement accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281(3):L529–L533. https://doi.org/10.1152/ajplung.2001.281.3.L529

    Article  CAS  PubMed  Google Scholar 

  2. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302. https://doi.org/10.1161/01.ATV.5.3.293

    Article  CAS  PubMed  Google Scholar 

  3. Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466. https://doi.org/10.1161/CIRCIMAGING.112.973370

    Article  PubMed  Google Scholar 

  4. Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, Davis A, Prendergast B, Markl M, Barker AJ, Neubauer S, Myerson SG (2013) Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6(4):499–507. https://doi.org/10.1161/CIRCIMAGING.113.000528

    Article  PubMed  Google Scholar 

  5. Uretsky S, Gillam LD (2014) Nature versus nurture in bicuspid aortic valve aortopathy: more evidence that altered hemodynamics may play a role. Circulation 129(6):622–624. https://doi.org/10.1161/CIRCULATIONAHA.113.007282

    Article  PubMed  Google Scholar 

  6. Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, Serruys PW (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Rev Cardiol 2:456–464. https://doi.org/10.1038/ncpcardio0298

    Article  CAS  Google Scholar 

  7. Groen HC, Gijsen FJH, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen AFW, Yuan C, Wentzel JJ (2007) Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38:2379–2381. https://doi.org/10.1161/STROKEAHA.107.484766

    Article  PubMed  Google Scholar 

  8. Ha H, Huh H, Yang DH, Kim N (2019) Quantification of hemodynamic parameters using four-dimensional flow MRI. J Korean Soc Radiol 80:239–258. https://doi.org/10.3348/jksr.2019.80.2.239

    Article  Google Scholar 

  9. Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ (2016) Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging 32(10):1529–1541. https://doi.org/10.1007/s10554-016-0938-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60(5):1218–1231. https://doi.org/10.1002/mrm.21778

    Article  CAS  PubMed  Google Scholar 

  11. Pereira VM, Brina O, Bijlenga P, Bouillot P, Narata AP, Schaller K, Lovblad K-O, Ouared R (2014) Wall shear stress distribution of small aneurysms prone to rupture: a case-control study. Stroke 45:261–264. https://doi.org/10.1161/STROKEAHA.113.003247

    Article  PubMed  Google Scholar 

  12. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi FM, Redaelli A (2009) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37:516–531. https://doi.org/10.1007/s10439-008-9609-6

    Article  PubMed  Google Scholar 

  13. Kecskemeti S, Johnson K, Wu Y, Mistretta C, Turski P, Wieben O (2012) High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory. J Magn Reson Imaging 35(3):518–527. https://doi.org/10.1002/jmri.23501

    Article  PubMed  Google Scholar 

  14. Petersson S, Dyverfeldt P, Gårdhagen R, Karlsson M, Ebbers T (2010) Simulation of phase-contrast MRI intravoxel velocity standard deviation (IVSD) mapping. Magn Reson Med 64(4):1039–1046. https://doi.org/10.1002/mrm.22494

    Article  PubMed  Google Scholar 

  15. Zawawi MH, Saleha A, Salwa A, Hassan NH, Zahari NM, Ramli MZ, Muda ZC (2018) A review: fundamentals of computational fluid dynamics (CFD). AIP Conf Proc 2030(1):020252. https://doi.org/10.1063/1.5066893

    Article  Google Scholar 

  16. Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) “Virtual” (computed) fractional flow reserve: current challenges and limitations. JACC Cardiovasc Interv 8(8):1009–1017. https://doi.org/10.1016/j.jcin.2015.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Simon HA, Ge L, Sotiropoulos F, Yoganathan AP (2010) Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann Biomed Eng 38:841–853. https://doi.org/10.1007/s10439-009-9857-0

    Article  PubMed  Google Scholar 

  18. Pennati G, Corsini C, Hsia T-Y, Migliavacca F, for the Modeling of Congenital Hearts Alliance (MOCHA) Investigators (2013) Computational fluid dynamics models and congenital heart diseases. Front Pediatr 1:4. https://doi.org/10.3389/fped.2013.00004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiu W-C, Girdhar G, Xenos M, Alemu Y, Soares JS, Einav S, Slepian M, Bluestein D (2014) Thromboresistance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulationoptimized HeartAssist 5 VAD. J Biomech Eng 136(2):021014. https://doi.org/10.1115/1.4026254

    Article  PubMed  Google Scholar 

  20. Dong J, Wong KKL, Tu J (2013) Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance. Int J Numer Method Biomed Eng 29(4):476–491. https://doi.org/10.1002/cnm.2529

    Article  PubMed  Google Scholar 

  21. Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F (2009) Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. J Eng Math 64(4):367–378. https://doi.org/10.1007/s10665-009-9266-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 61(2):409–417. https://doi.org/10.1002/mrm.21861

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boccadifuoco A, Mariotti A, Capellini K, Celi S, Salvetti MV (2018) Validation of numerical simulations of thoracic aorta hemodynamics: comparison with in vivo measurements and stochastic sensitivity analysis. Cardiovasc Eng Tech 9(4):688–706. https://doi.org/10.1007/s13239-018-00387-x

    Article  Google Scholar 

  24. Miyazaki S, Itatani K, Furusawa T, Nishino T, Sugiyama M, Takehara Y, Yasukochi S (2017) Validation of numerical simulation methods in aortic arch using 4D flow MRI. Heart Vessels 32:1032–1044. https://doi.org/10.1007/s00380-017-0979-2

    Article  PubMed  Google Scholar 

  25. Cibis M, Potters WV, Gijsen FJH, Marquering H, vanBavel E, van der Steen AFW, Nederveen AJ, Wentzel JJ (2014) Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR Biomed 27:826–834. https://doi.org/10.1002/nbm.3126

    Article  PubMed  Google Scholar 

  26. Wentland AL, Grist TM, Wieben O (2013) Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 20(6):699–704. https://doi.org/10.1016/j.acra.2012.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ebel S, Hübner L, Köhler B, Kropf S, Preim B, Jung B, Grothoff M, Gutberlet M (2019) Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study. Eur Radiol Exp 3(1):1–12. https://doi.org/10.1186/s41747-019-0089-2

    Article  Google Scholar 

  28. Park J, Kim J, Chang Y, Youn SW, Lee HJ, Kang EJ, Lee KN, Suchánek V, Hyun S, Lee J (2019) Analysis of the time-velocity curve in phase-contrast magnetic resonance imaging: a phantom study. Comput Assist Surg 24:3–12. https://doi.org/10.1080/24699322.2019.1649066

    Article  Google Scholar 

  29. Kim GB, Lee S, Kim H, Yang DH, Kim Y-H, Kyung YS, Kim C-S, Choi SH, Kim BJ, Ha H, Kwon SU, Kim N (2016) Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol 17(2):182–197. https://doi.org/10.3348/kjr.2016.17.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chung TG, Kim YS, Chang Y, Lee SK, Kim YH, Ryeom HK, Lee JM, Lee CH, Kim TH, Suh KJ (2000) High signal intensity on T1-weighted MR image related to vacuum cleft in the intervertebral disk: clinical and phantom study. J Korean Radiol Soc 43:651–656. https://doi.org/10.3348/jkrs.2000.43.6.651

    Article  Google Scholar 

  31. Segur JB, Oberstar HE (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43(9):2117–2120. https://doi.org/10.1021/ie50501a040

    Article  CAS  Google Scholar 

  32. Volk A, Kähler CJ (2018) Density model for aqueous glycerol solutions. Exp Fluids 59(5):75. https://doi.org/10.1007/s00348-018-2527-y

    Article  CAS  Google Scholar 

  33. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671. https://doi.org/10.1148/radiographics.22.3.g02ma11651

    Article  PubMed  Google Scholar 

  34. Rosner B (2015) Fundamentals of biostatistics. Brookes/Cole, USA

    Google Scholar 

  35. Chandran KB, Rittgers SE, Yoganathan AP (2012) Biofluid mechanics: the human circulation. CRC Press, USA

    Book  Google Scholar 

  36. Rajan KS, Pitchumani B, Srivastava SN, Mohanty B (2007) Two-dimensional simulation of gas–solid heat transfer in pneumatic conveying. Int J Heat Mass Transf 50(5–6):967–976. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.009

    Article  Google Scholar 

  37. Frydrychowicz A, François CJ, Turski PA (2011) Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Rad 80:24–35. https://doi.org/10.1016/j.ejrad.2011.01.094

    Article  Google Scholar 

  38. van Ooij P, Schneiders JJ, Marquering HH, Majoie CB, van Bavel E, Nederveen AJ (2013) 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics. Am J Neurorad 34(9):1785–1791. https://doi.org/10.3174/ajnr.A3484

    Article  Google Scholar 

  39. Ha H, Lantz J, Haraldsson H, Casas B, Ziegler M, Karlsson M, Saloner D, Dyverfelt P, Ebbers T (2016) Assessment of turbulent viscous stress using ICOSA 4D flow MRI for prediction of hemodynamic blood damage. Sci Rep 6:39773. https://doi.org/10.1038/srep39773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lantz J, Ebbers T, Engvall J, Karlsson M (2013) Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation. J Biomech 46(11):1851–1858. https://doi.org/10.1016/j.jbiomech.2013.04.028

    Article  PubMed  Google Scholar 

  41. Ngo MT, Kim CI, Jung J, Chung GH, Lee DH, Kwak HS (2019) Four-dimensional flow magnetic resonance imaging for assessment of velocity magnitudes and flow patterns in the human carotid artery bifurcation: comparison with computational fluid dynamics. Diagnostics 9(4):223. https://doi.org/10.3390/diagnostics9040223

    Article  PubMed Central  Google Scholar 

  42. Kweon J, Yang DH, Kim GB, Kim N, Paek M, Stalder AF, Greiser A, Kim Y-H (2016) Four-dimensional flow MRI for evaluation of post-stenotic turbulent flow in a phantom: comparison with flowmeter and computational fluid dynamics. Eur Radiol 26(10):3588–3597. https://doi.org/10.1007/s00330-015-4181-6

    Article  PubMed  Google Scholar 

  43. Dyverfeldt P, Kvitting JPE, Sigfridsson A, Engvall J, Bolger AF, Ebbers T (2008) Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J Magn Reson Imaging 28(3):655–663. https://doi.org/10.1002/jmri.21475

    Article  PubMed  Google Scholar 

  44. Box FM, van der Geest RJ, van der Grond J, van Osch MJ, Zwinderman AH, Palm-Meinders IH, Reiber JH (2007) Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals. J Magn Reson Imaging 26(3):598–605. https://doi.org/10.1002/jmri.21086

    Article  PubMed  Google Scholar 

  45. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll CJ, Ebbers T, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovas Magn Reson 17(1):1–19. https://doi.org/10.1186/s12968-015-0174-5

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junghun Kim or Jongmin Lee.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The study was approved by the institutional review board (IRB) of the Kyungpook National University (KNU 2018-0175), and the IRB exempted consent from the patients, given that it was a retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, J., Hyun, S. et al. Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics. Magn Reson Mater Phy 35, 719–732 (2022). https://doi.org/10.1007/s10334-021-00984-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-021-00984-3

Keywords

Navigation