Skip to main content
Log in

Feasibility of in vivo three-dimensional T *2 mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T *2 mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging.

Materials and methods

Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-(1-15N)-1-oxyl (2H,15N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-1-oxyl (2H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2H,15N-DCP and 2H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T *2 mapping.

Results

2H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2H,15N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2H,15N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T *2 maps with 2H,15N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min.

Conclusion

EPR signals of 2H,15N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T *2 mapping with CW-EPR-based SPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a critical parameter? Small molecules and hypoxia. J Cell Mol Med 15:1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horsman MR (1998) Measurement of tumor oxygenation. Int J Radiat Oncol Biol Phys 42:701–704

    Article  CAS  PubMed  Google Scholar 

  3. Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progress in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  Google Scholar 

  4. Clark LC Jr, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  PubMed  Google Scholar 

  5. Peterson JI, Fitzgerald R, Buckhold DK (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal Chem 56:62–67

    Article  CAS  PubMed  Google Scholar 

  6. Mason RP, Rodbumrung W, Anticj PP (1996) Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed 9:125–134

    Article  CAS  PubMed  Google Scholar 

  7. Liu KJ, Gast P, Moussavi M, Norby SW, Vahidi N, Walczak T, Wu M, Swartz HM (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci USA 90:5438–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halpern HJ, Yu C, Peric M, Barth E, Grdina DJ, Teicher BA (1994) Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci USA 91:13047–13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zweier JL, Kuppusamy P (1988) Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc Natl Acad Sci USA 85:5703–5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pandian RP, Parinandi NL, Ilangovan G, Zweier JL, Kuppusamy P (2003) Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radic Biol Med 35:1138–1148

    Article  CAS  PubMed  Google Scholar 

  11. Hoff J, Deen R (1971) The influence of oxygen on the E.R.S. spectrum of a radiosensitizing nitroxide. Int J Radiat Biol 19:499–501

    CAS  Google Scholar 

  12. Backer JM, Budker VG, Eremenko SI, Molin YN (1977) Detection of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals. Biochim Biophys Acta 460:152–156

    Article  CAS  PubMed  Google Scholar 

  13. Sarna T, Duleba A, Korytowski W, Swartz H (1980) Interaction of melanin with oxygen. Arch Biochem Biophys 200:140–148

    Article  CAS  PubMed  Google Scholar 

  14. Lai C-S, Hopwood LE, Hyde JS, Lukiewicz S (1982) ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc Natl Acad Sci USA 79:1166–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halpern HJ, Peric M, Nguyen TD, Spencer DP, Teicher BA, Lin YJ (1990) Selective isotopic labeling of a nitroxide spin label to enhance sensitivity for T2 oxymetry. J Magn Reson 90:40–51

    CAS  Google Scholar 

  16. Ardenkjær-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, Golman K (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson 133:1–12

    Article  PubMed  Google Scholar 

  17. Rogozhnikova OY, Vasiliev VG, Troitskaya TI, Trukhin DV, Mikhalina TV, Halpern HJ, Tormysheva VM (2013) Generation of trityl radicals by nucleophilic quenching of tris(2,3,5,6-tetrathiaaryl)methyl cations and practical and convenient large-scale synthesis of persistent tris(4-carboxy-2,3,5,6-tetrathiaaryl)methyl radical. Eur J Org Chem 2013:3347–3355

    Article  CAS  Google Scholar 

  18. Dhimitruka I, Velayutham M, Bobko AA, Khramtsov VV, Villamena FA, Hadad CF, Zweier JL (2007) Large scale synthesis of a persistent trityl radical for use in biomedical EPR applications and imaging. Bioorg Med Chem Lett 17:6801–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halpern HJ (2003) Stable soluble paramagnetic compounds. In: Berliner LJ (ed) In vivo EPR (ESR): theory and applications. Kluwer Academic/Plenum Publishers, New York, pp 201–232

    Chapter  Google Scholar 

  20. Ahn KH, Halpern HJ (2007) Spatially uniform sampling in 4-D EPR spectral-spatial imaging. J Magn Reson 185:152–158

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto K, Chandrika B, Lohman JAB, Mitchell JB, Krishna MC, Subramanian S (2003) Application of continuous-wave EPR spectral-spatial image reconstruction techniques for in vivo oxymetry: comparison of projection reconstruction and constant-time modalities. Magn Reson Med 50:865–874

    Article  PubMed  Google Scholar 

  22. Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook J, Taube A, Mitchell JB, Lohman JAB, Krishna MC (2002) Single-point (constant-time) imaging in radiofrequency Fourier transform electron paramagnetic resonance. Magn Reson Med 48:370–379

    Article  PubMed  Google Scholar 

  23. Epel B, Bowman MK, Mailer C, Halpern HJ (2014) Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med 72:362–368

    Article  PubMed  Google Scholar 

  24. Matsumoto S, Hyodo F, Subramanian S, Devasahayam N, Munasinghe J, Hyodo E, Gadisetti C, Cook JA, Mitchell JB, Krishna MC (2008) Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice. J Clin Invest 118:1965–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Epel B, Sundramoorthy SV, Barth ED, Mailer C, Halpern HJ (2011) Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications. Med Phys 38:2045–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hyodo F, Matsumoto S, Devasahayam N, Dharmaraj C, Subramanian S, Mitchell JB, Krishna MC (2009) Pulsed EPR imaging of nitroxides in mice. J Magn Reson 197:181–185

    Article  CAS  PubMed  Google Scholar 

  27. Elas M, Williams BB, Parasca A, Malier C, Pelizzari CA, Lewis MA, River JN, Karczmar GS, Barth ED, Halpern HJ (2003) Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 49:682–691

    Article  PubMed  Google Scholar 

  28. Kuppusamy P, Chzhan M, Samouilov A, Wang P, Zweier JL (1995) Mapping the spin-density and lineshape distribution of free radicals using 4D spectral-spatial EPR imaging. J Magn Reson, Ser B 107:116–125

    Article  CAS  Google Scholar 

  29. Gorodetsky AA, Kirilyuk IA, Khramtsov VV, Komarov DA (2016) Functional electron paramagnetic resonance imaging of ischemic rat heart: monitoring of tissue oxygenation and pH. Magn Reson Med 76:350–358

    Article  CAS  PubMed  Google Scholar 

  30. Redler G, Barth ED, Bauer KS Jr, Kao JPY, Rosen GM, Halpern HJ (2014) In vivo electron paramagnetic resonance imaging of differential tumor targeting using cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl. Magn Reson Med 71:1650–1656

    Article  CAS  PubMed  Google Scholar 

  31. Subramanian S, Devasahayam N, Matsumoto S, Saito K, Mitchell JB, Krishna MC (2012) Echo-based single-point imaging (ESPI): a novel pulsed EPR imaging modality for high spatial resolution and quantitative oximetry. J Magn Reson 218:105–114

    Article  CAS  PubMed  Google Scholar 

  32. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  33. Suit HD, Suchato C (1967) Hyperbaric oxygen and radiotherapy of a fibrosarcoma and of a squamous-cell carcinoma of C3H mice. Radiology 89:713–719

    Article  CAS  PubMed  Google Scholar 

  34. Sato-Akaba H, Fujii H, Hirata H (2008) Improvement of temporal resolution for three-dimensional continuous-wave electron paramagnetic resonance imaging. Rev Sci Instrum 79:123701

    Article  PubMed  Google Scholar 

  35. Sato-Akaba H, Kuwahara Y, Fujii H, Hirata H (2009) Half-life mapping of nitroxyl radicals with three-dimensional electron paramagnetic resonance imaging at an interval of 3.6 seconds. Anal Chem 81:7501–7506

    Article  CAS  PubMed  Google Scholar 

  36. Kawada Y, Hirata H, Fujii H (2007) Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. J Magn Reson 184:29–38

    Article  CAS  PubMed  Google Scholar 

  37. Jang H, Subramanian S, Devasahayam N, Saito K, Matsumoto S, Krishna MC, McMillan AB (2013) Single acquisition quantitative single-point electron paramagnetic resonance imaging. Magn Reson Med 70:1173–1181

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  39. Keana JFW, Hideg K, Birrell GB, Hankovszky OH, Ferguson G, Parvez M (1982) New mono- and difunctionalized 2,2,5,5-tetramethylpyrrolidine- and Δ3-pyrroline-1-oxyl nitroxide spin labels. Can J Chem 60:1439–1447

    Article  CAS  Google Scholar 

  40. Keana JFW, Pou S, Rosen GM (1987) Nitroxides as potential contrast enhancing agents for MRI application: influence of structure on the rate of reduction by rat hepatocytes, whole liver homogenate, subcellular fractions, and ascorbate. Magn Reson Med 5:525–536

    Article  CAS  PubMed  Google Scholar 

  41. Miyake M, Shen J, Liu S, Shi H, Liu W, Yuan Z, Pritchard A, Kao JPY, Liu KJ, Rosen GM (2006) Acetoxymethoxycarbonyl nitroxides as electron paramagnetic resonance proimaging agents to measure O2 levels in mouse brain: a pharmacokinetic and pharmacodynamic study. J Pharmacol Exp Ther 318:1187–1193

    Article  CAS  PubMed  Google Scholar 

  42. Burks SR, Bakhshai J, Makowsky MA, Muralidharan S, Tsai P, Rosen GM, Kao JPY (2010) 2H,15N-substituted nitroxides as sensitive probes for electron paramagnetic resonance imaging. J Org Chem 75:6463–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26249057 (to HH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All animal experiments were in accordance with the Law for The Care and Welfare of Animals in Japan and with protocols approved by the Animal Experiment Committee of Hokkaido University. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, H., Komarov, D.A., Yasui, H. et al. Feasibility of in vivo three-dimensional T *2 mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging. Magn Reson Mater Phy 30, 291–298 (2017). https://doi.org/10.1007/s10334-016-0606-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0606-8

Keywords

Navigation