Skip to main content

Advertisement

Log in

Reproducibility of macromolecule suppressed GABA measurement using motion and shim navigated MEGA-SPECIAL with LCModel, jMRUI and GANNET

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Measuring the pure form of GABA has become increasingly important because of its association with behaviour and certain pathologies. The aim of this study was to assess the reproducibility of GABA measurements using a shim and motion navigated MEGA-SPECIAL sequence with LCModel, jMRUI and GANNET software.

Materials and methods

Motion and shim navigated MEGA-SPECIAL scans were acquired in 20 healthy subjects. Two acquisitions were performed for each of two regions: the anterior cingulate (ACC) and medial-parietal (PAR) cortices. Absolute GABA concentration (\({\text{GABA}}_{{{\text{H}}_{2} {\text{O}}}}\)) and GABA-to-Creatine ratio (GABA/Cr) were quantified using the three software packages.

Results

Using the within-subject coefficient of variation (CVws) as an index, reproducibility for both GABAH20 and GABA/Cr ranged from 13 to 22 % in the ACC and 13 to 18 % in PAR using the three software packages.

Conclusion

Based on CVws, GABA concentrations in both the ACC and PAR are reproducible using a shim and motion navigated MEGA-SPECIAL sequence with any of the three software packages, thus demonstrating the ability to quantify the pure form of GABA using these software in studies relating GABA to pathology and healthy behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levy L, Degnan A (2013) GABA-based evaluation of neurologic conditions: MR spectroscopy. Am J Neuroradiol 34:259–265

    Article  CAS  PubMed  Google Scholar 

  2. Mullins PG, McGonigle DJ, O’Gorman R, Puts NA, Vidyasagar R, Evans CJ, Edden RA (2012) Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 86:43–52

    Article  PubMed  PubMed Central  Google Scholar 

  3. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  CAS  PubMed  Google Scholar 

  4. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  CAS  PubMed  Google Scholar 

  5. Naressi A, Couturier C, Devos J, Janssen M, Mangeat C, De Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. Magn Reson Mater Phy 12:141–152

    Article  CAS  Google Scholar 

  6. Edden RA, Puts NA, Harris AD, Barker PB, Evans CJ (2013) Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J Magn Reson Imaging 40:1445–1452

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bogner W, Gruber S, Doelken M, Stadlbauer A, Ganslandt O, Boettcher U, Trattnig S, Doerfler A, Stefan H, Hammen T (2010) In vivo quantification of intracerebral GABA by single-voxel (1)H-MRS—how reproducible are the results? Eur J Radiol 73:526–531

    Article  CAS  PubMed  Google Scholar 

  8. Mikkelsen M, Singh KD, Sumner P, Evans CJ (2015) Comparison of the repeatability of GABA-edited magnetic resonance spectroscopy with and without macromolecule suppression. Magn Reson Med 75:946–953

    Article  PubMed  Google Scholar 

  9. Near J, Ho YCL, Sandberg K, Kumaragamage C, Blicher JU (2014) Long-term reproducibility of GABA magnetic resonance spectroscopy. Neuroimage 99:191–196

    Article  CAS  PubMed  Google Scholar 

  10. Bhagwagar Z, Wylezinska M, Taylor M, Jezzard P, Matthews PM, Cowen PJ (2004) Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry 161:368–370

    Article  PubMed  Google Scholar 

  11. Petroff OA, Rothman DL, Behar KL, Mattson RH (1995) Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurements of γ-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 36:457–464

    Article  CAS  PubMed  Google Scholar 

  12. Puts NA, Edden RA (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc 60:29–41

    Article  CAS  PubMed  Google Scholar 

  13. O’Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E (2011) In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging 33:1262–1267

    Article  PubMed  PubMed Central  Google Scholar 

  14. Evans CJ, McGonigle DJ, Edden RAE (2010) Diurnal stability of γ-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imaging 31:204–209

    Article  PubMed  Google Scholar 

  15. Evans CJ, Puts NA, Robson SE, Boy F, McGonigle DJ, Sumner P, Singh KD, Edden RA (2013) Subtraction artifacts and frequency (Mis-) alignment in J-difference GABA editing. J Magn Reson Imaging 38:970–975

    Article  PubMed  Google Scholar 

  16. Harris AD, Puts NA, Barker PB, Edden RA (2014) Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression. Magn Reson Med 74:1523–1529

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bai X, Edden RA, Gao F, Wang G, Wu L, Zhao B, Wang M, Chan Q, Chen W, Barker PB (2014) Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J Magn Reson Imaging 41:1326–1331

    Article  PubMed  Google Scholar 

  18. Yamamoto M, Takahashi S, Otsuki S, Kugoh T, Hosokawa K, Ogawa N (1985) GABA levels in cerebrospinal fluid of patients with epilepsy. Folia Psychiatr Neurol Jpn 39:515–519

    CAS  PubMed  Google Scholar 

  19. Ticku MK (1990) Alcohol and GABA-benzodiazepine receptor function. Ann Med 22:241–246

    Article  CAS  PubMed  Google Scholar 

  20. Winkelman JW, Buxton OM, Jensen JE, Benson KL, O’Connor SP, Wang W, Renshaw PF (2008) Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep 31:1499–1506

    PubMed  PubMed Central  Google Scholar 

  21. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665

    Article  PubMed  Google Scholar 

  22. Block W, Träber F, von Widdern O, Metten M, Schild H, Maier W, Zobel A, Jessen F (2009) Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol 12:415–422

    Article  CAS  PubMed  Google Scholar 

  23. Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM (2006) Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol 95:1639–1644

    Article  CAS  PubMed  Google Scholar 

  24. Michels L, Martin E, Klaver P, Edden R, Zelaya F, Lythgoe DJ, Lüchinger R, Brandeis D, O’Gorman RL (2012) Frontal GABA levels change during working memory. PLoS One 7:e31933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Gorman R, Edden R, Michels L, Murdoch J and Martin E (2007) Precision and repeatability of in vivo GABA and glutamate quantification. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in medicine; Montreal, Canada, 2007, p 3434

  26. Terpstra M, Ugurbil K, Gruetter R (2002) Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 47:1009–1012

    Article  CAS  PubMed  Google Scholar 

  27. Dydak U, Jiang YM, Long LL, Zhu H, Chen J, Li WM, Edden RA, Hu S, Fu X, Long Z (2011) In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ Health Persp 119:219

    Article  CAS  Google Scholar 

  28. Henry P-G, Dautry C, Hantraye P, Bloch G (2001) Brain GABA editing without macromolecule contamination. Magn Reson Med 45:517–520

    Article  CAS  PubMed  Google Scholar 

  29. Near J, Simpson R, Cowen P, Jezzard P (2011) Efficient γ-aminobutyric acid editing at 3T without macromolecule contamination: MEGA-SPECIAL. NMR Biomed 24:1277–1285

    Article  CAS  PubMed  Google Scholar 

  30. Saleh MG, Alhamud A, Near J, van der Kouwe AJ, Meintjes EM (2016) Volumetric navigated MEGA-SPECIAL for real-time motion and shim corrected GABA editing. NMR Biomed 29:248–255

    Article  CAS  PubMed  Google Scholar 

  31. Wijtenburg SA, Rowland LM, Edden RA, Barker PB (2013) Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38:460–467

    Article  PubMed  PubMed Central  Google Scholar 

  32. van der Kouwe AJ, Benner T, Salat DH, Fischl B (2008) Brain morphometry with multiecho MPRAGE. Neuroimage 40:559–569

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJ (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 68:389–399

    Article  PubMed  Google Scholar 

  34. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14:26–30

    Article  CAS  PubMed  Google Scholar 

  35. Fuchs A, Luttje M, Boesiger P, Henning A (2013) SPECIAL semi-LASER with lipid artifact compensation for 1H MRS at 7 T. Magn Reson Med 69:603–612

    Article  CAS  PubMed  Google Scholar 

  36. Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J (2015) Advanced processing and simulation of MRS data using the FID appliance (FID-A)—An open source, MATLAB-based toolkit. Magn Reson Med. doi:10.1002/mrm.26091

    Google Scholar 

  37. Hess A, Jacobson S, Jacobson J, Molteno C, van der Kouwe AJ, Meintjes EM (2014) A comparison of spectral quality in magnetic resonance spectroscopy data acquired with and without a novel EPI-navigated PRESS sequence in school-aged children with fetal alcohol spectrum disorders. Metab Brain Dis 29:323–332

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu H, Edden RA, Ouwerkerk R, Barker PB (2011) High resolution spectroscopic imaging of GABA at 3 Tesla. Magn Reson Med 65:603–609

    Article  CAS  PubMed  Google Scholar 

  39. Stagg CJ, Wylezinska M, Matthews PM, Johansen-Berg H, Jezzard P, Rothwell JC, Bestmann S (2009) Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol 101:2872–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  CAS  PubMed  Google Scholar 

  41. Kaiser L, Young K, Meyerhoff D, Mueller S, Matson G (2008) A detailed analysis of localized J-difference GABA editing: theoretical and experimental study at 4 T. NMR Biomed 21:22–32

    Article  CAS  PubMed  Google Scholar 

  42. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE, Morrison LA (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55:1219–1226

    Article  CAS  PubMed  Google Scholar 

  43. Edden RA, Intrapiromkul J, Zhu H, Cheng Y, Barker PB (2012) Measuring T2 in vivo with J-difference editing: application to GABA at 3 tesla. J Magn Reson Imaging 35:229–234

    Article  PubMed  Google Scholar 

  44. Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331

    Article  PubMed  Google Scholar 

  45. Puts NA, Barker PB, Edden RA (2013) Measuring the longitudinal relaxation time of GABA in vivo at 3 Tesla. J Magn Reson Imaging 37:999–1003

    Article  PubMed  Google Scholar 

  46. Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240

    PubMed  Google Scholar 

  47. Aufhaus E, Weber-Fahr W, Sack M, Tunc-Skarka N, Oberthuer G, Hoerst M, Meyer-Lindenberg A, Boettcher U, Ende G (2013) Absence of changes in GABA concentrations with age and gender in the human anterior cingulate cortex: a MEGA-PRESS study with symmetric editing pulse frequencies for macromolecule suppression. Magn Reson Med 69:317–320

    Article  CAS  PubMed  Google Scholar 

  48. Bogner W, Gagoski B, Hess AT, Bhat H, Tisdall MD, van der Kouwe AJ, Strasser B, Marjańska M, Trattnig S, Grant E et al (2014) 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI. Neuroimage 103:290–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    Article  CAS  PubMed  Google Scholar 

  50. Long Z, Medlock C, Dzemidzic M, Shin Y-W, Goddard AW, Dydak U (2013) Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 44:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kreis R (2016) The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 75:15–18

    Article  PubMed  Google Scholar 

  52. Harada M, Kubo H, Nose A, Nishitani H, Matsuda T (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32:828–833

    Article  PubMed  Google Scholar 

  53. Hodkinson DJ, Krause K, Khawaja N, Renton TF, Huggins JP, Vennart W, Thacker MA, Mehta MA, Zelaya FO, Williams SC et al (2013) Quantifying the test–retest reliability of cerebral blood flow measurements in a clinical model of on-going post-surgical pain: a study using pseudo-continuous arterial spin labelling. Neuroimage Clin 3:301–310

    Article  PubMed  PubMed Central  Google Scholar 

  54. Buckens CF, de Jong PA, Mol C, Bakker E, Stallman HP, Mali WP, van der Graaf Y, Verkooijen HM (2013) Intra and interobserver reliability and agreement of semiquantitative vertebral fracture assessment on chest computed tomography. PLoS One 8:e71204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25:123–128

    Article  CAS  PubMed  Google Scholar 

  56. Masubuchi S, Honma S, Abe H, Ishizaki K, Namihira M, Ikeda M, Ki Honma (2000) Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. Eur J Neurosci 12:4206–4214

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support was provided by the South African Research Chairs Initiative of the National Research Foundation and Department of Science and Technology (NRF-DST), National Institutes of Health (NIH) Grant R01HD071664 and the South African Medical Research Council (MRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad G. Saleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, M.G., Near, J., Alhamud, A. et al. Reproducibility of macromolecule suppressed GABA measurement using motion and shim navigated MEGA-SPECIAL with LCModel, jMRUI and GANNET. Magn Reson Mater Phy 29, 863–874 (2016). https://doi.org/10.1007/s10334-016-0578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0578-8

Keywords

Navigation