Skip to main content

Advertisement

Log in

Highly undersampled peripheral Time-of-Flight magnetic resonance angiography: optimized data acquisition and iterative image reconstruction

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The aim of this study was to investigate the acceleration of peripheral Time-of-Flight magnetic resonance angiography using Compressed Sensing and parallel magnetic resonance imaging (MRI) while preserving image quality and vascular contrast.

Materials and methods

An analytical sampling pattern is proposed that combines aspects of parallel MRI and Compressed Sensing. It is used in combination with a dedicated Split Bregman algorithm. This approach is compared with current state-of-the-art patterns and reconstruction algorithms.

Results

The acquisition time was reduced from 30 to 2.5 min in a study using ten volunteer data sets, while showing improved sharpness, better contrast and higher accuracy compared to state-of-the-art techniques.

Conclusion

This study showed the benefits of the proposed dedicated analytical sampling pattern and Split Bregman algorithm for optimizing the Compressed Sensing reconstruction of highly accelerated peripheral Time-of-Flight data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meaney JFM (2003) Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol 13(4):836–852

    PubMed  Google Scholar 

  2. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  Google Scholar 

  3. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  4. Griswold MA, Jakob PN, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  5. Qu P, Luo J, Zhang B, Wang J, Shen GX (2007) An improved iterative SENSE reconstruction method. Concept Magn Reson B 31B:44–50

    Article  Google Scholar 

  6. Liu B, King K, Steckner M, Xie J, Sheng J, Ying L (2009) Regularized sensitivity encoding (SENSE) reconstruction using Bregman iterations. Magn Reson Med 61(1):145–152

    Article  PubMed  Google Scholar 

  7. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  PubMed  Google Scholar 

  8. Goldstein T, Osher S (2009) The Split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2:323–343

    Article  Google Scholar 

  9. Aelterman J, Luong H, Goossens B, Pizurica A, Philips W (2010) COMPASS: a joint framework for parallel imaging and compressive sensing in MRI. In: Proceedings of the IEEE international conference on image processing (ICIP 2010), Hong Kong, China, Sept 26–29 2010, pp 1653–1656

  10. Facchinei F, Pang J (2003) Finite-dimensional variational inequalities and complementarity problems, vol I and II. Springer, Berlin

    Google Scholar 

  11. Lustig M, Alley M, Vasanawala S, Donoho DL, Pauly JM (2009) L1SPIR-iT: autocalibrating parallel imaging compressed sensing. In: Proceedings of the annual meeting ISMRM, Honolulu, USA, April 18–24 2009, p 334

  12. Osher R, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–2):259–268

    Google Scholar 

  13. Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57(6):1086–1098

    Article  PubMed  Google Scholar 

  14. Nocedal F (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35(151):773–782

    Article  Google Scholar 

  15. Plonka G, Ma J (2011) Curvelet–wavelet regularized split bregman iteration for compressed sensing. Int J Wavelets Multires 9(1):79–110

    Article  Google Scholar 

  16. Ramani S, Fessler J (2011) Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans Med Imaging 30(3):694–706

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  PubMed  Google Scholar 

  18. Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, Finn JP (2001) Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography. Radiology 219(1):270–277

    Article  CAS  PubMed  Google Scholar 

  19. Hutter J, Grimm R, Forman C, Hornegger J, Schmitt P (2012) Vessel adapted regularization for iterative reconstruction in MR angiography. In: Pipe J (ed) Proceedings of the 21st annual meeting of the ISMRM. Melbourne, Australia, May 5–11, 2012

  20. Edelman R, Sheehan J, Dunkle E, Schindler N, Carr J, Koktzoglou I (2010) Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med 63(4):951–958

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The author Jana Hutter declares that she has no conflict of interest. Christoph Forman, Robert Grimm and Peter Schmitt are employees of Siemens AG, Healthcare Sector, Magnetic Resonance, Application Development.

Ethical standards

The manuscript does not contain clinical studies or patient data. All volunteers gave their informed consent prior to inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Hutter.

Appendix: Formulation of the split problem sub-problems

Appendix: Formulation of the split problem sub-problems

Starting from Eq. (3), the inclusion of the residual errors \({\bf b}_{x},{\bf b}_{y},{\bf b}_{w}\in {\mathbb {C}}^N\) yields the formulation in two steps, given in Eqs. (45).

$$\begin{aligned} (\hat{{\bf x}},\hat{{\bf d}_{x}},\hat{{\bf d}_{y}},\hat{{\bf d}_{w}})=&{\mathop {{{\mathrm{\arg \!\min }}}}\limits _{{\bf x},{\bf d}_{w},{\bf d}_{x},{\bf d}_{y}}}\frac{1}{2}\left\| {\bf E} {\bf x} - {\bf m}\right\| _{L_2}^2 \\&+ \lambda _{\mathrm{t}}\sum _{\iota =1}^{N}\sqrt{({\bf d}_{x})_{\iota }^2+({\bf d}_{y})_{\iota }^2} + \lambda _{\mathrm{w}}\left\| {\bf d}_{w}\right\| _{L_1}\\&+ \frac{\alpha \lambda _{\mathrm{t}}}{2} \left( \left\| {\bf d}_{x}- \nabla _x{\bf x} - {\bf b}_{x}^j\right\| _{L_2}^2 + \left\| {\bf d}_{y}- \nabla _y{\bf x} - {\bf b}_{y}^j\right\| _{L_2}^2\right) \\&+ \frac{\alpha \lambda _{\mathrm{w}}}{2}\left\| {\bf d}_{w}- W({\bf x}) - {\bf b}_{w}^j\right\| _{L_2}^2\end{aligned}$$
(4)
$$\begin{aligned} {\bf b}_{x}^{j+1}&={\bf b}_{x}^j + \nabla _x {\bf x}^{j+1} - {\bf d}_{x}^{j+1}, \\ {\bf b}_{y}^{j+1}&={\bf b}_{y}^j + \nabla _y {\bf x}^{j+1} - {\bf d}_{y}^{j+1}, \text { and }\\ {\bf b}_{w}^{j+1}&={\bf b}_{w}^j + W({\bf x}^{j+1}) - {\bf d}_{w}^{j+1}. \end{aligned}$$
(5)

The minimization problem for the \(\hbox {L}_2\) component equals

$$\begin{aligned}&({\bf x}^{j+1})={\mathop {{{\mathrm{\arg \!\min }}}}\limits _{{\bf x}}} \,{\mathcal {L}}_{{\text {SB-L2}}}({\bf x},{\bf d}_{x}^j,{\bf d}_{y}^j,{\bf d}_{w}^j, {\bf b}_{x}^j,{\bf b}_{y}^j,{\bf b}_{w}^j) \text { with }\\&\quad {\mathcal {L}}_{{\text {SB-L2}}}({\bf x},{\bf d}_{x}^j,{\bf d}_{y}^j,{\bf d}_{w}^j, {\bf b}_{x}^j,{\bf b}_{y}^j,{\bf b}_{w}^j)= \frac{1}{2} \left\| {\bf E}{\bf x} - {\bf m}\right\| _{L_2}^2\\&\qquad + \frac{\alpha \lambda _{\mathrm{t}}}{2}\left( \left\| {\bf d}_{x}^j- \nabla _x({\bf x}) -{\bf b}_{x}^j\right\| _{L_2}^2+\left\| {\bf d}_{y}^j- \nabla _y({\bf x}) - {\bf b}_{y}^j\right\| _{L_2}^2\right) + \frac{\alpha \lambda _{\mathrm{w}}}{2} \left\| {\bf d}_{w}^j- W({\bf x}) - {\bf b}_{w}^j\right\| _{L_2}^2 \end{aligned}$$
(6)

The sub-problems for the wavelet and total variation terms are formulated as

$$\begin{aligned} ({\bf d}_{x}^{j+1},{\bf d}_{y}^{j+1})={\mathop {{{\mathrm{\arg \!\min }}}}\limits _{{\bf d}_{x},{\bf d}_{y}}}&\frac{\alpha \lambda _{\mathrm{t}}}{2} \left\| {\bf d}_{x}- \nabla _x( {\bf x}^{j+1}) - {\bf b}_{x}^j\right\| _{L_2}^2 + \frac{\alpha \lambda _{\mathrm{t}}}{2} \left\| {\bf d}_{y}- \nabla _y( {\bf x}^{j+1}) - {\bf b}_{y}^j\right\| _{L_2}^2 + \lambda _{\mathrm{t}}\sum _{\iota =1}^{N}\sqrt{({\bf d}_{x})_{\iota }^2+({\bf d}_{y})_{\iota }^2} \text { and } \end{aligned}$$
(7)
$$\begin{aligned} ({\bf d}_{w}^{j+1})={\mathop {{{\mathrm{\arg \!\min }}}}\limits _{{\bf d}_{w}}}&{\frac{\alpha \lambda _{\mathrm{w}}}{2} \left\| {\bf d}_{w}-W({\bf x}^{j+1}) - {\bf b}_{w}^j\right\| _{L_2}^2 + \lambda _{\mathrm{w}}\left\| {\bf d}_{w}\right\| _{L_1}}. \end{aligned}$$
(8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutter, J., Grimm, R., Forman, C. et al. Highly undersampled peripheral Time-of-Flight magnetic resonance angiography: optimized data acquisition and iterative image reconstruction. Magn Reson Mater Phy 28, 437–446 (2015). https://doi.org/10.1007/s10334-014-0477-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0477-9

Keywords

Navigation