Skip to main content
Log in

Measuring liver triglyceride content in mice: non-invasive magnetic resonance methods as an alternative to histopathology

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Quantitative assessment of liver fat is highly relevant to preclinical liver research and should ideally be performed non-invasively. This study aimed to compare three non-invasive Magnetic Resonance (MR) and two histopathological methods against the reference standard of biochemically determined liver triglyceride content (LTC).

Materials and methods

A total of 50 mice [21 C57Bl/6OlaHsd mice (C57Bl/6), nine low-density lipoprotein (LDL) receptor knock-out −/− (LDL −/−) mice and 20 C57BL/6 mice] received either a high-fat, high-fat-high-cholesterol or control diet, respectively. Mice were examined 4, 8 or 12 weeks into the diet using MR [1H-MR Spectroscopy, Proton Density Fat Fraction (PDFF), mDixon] and histopathological methods (visual scoring or digital image analysis (DIA) of Oil-Red-O (ORO) stained liver sections). Correlations [Pearson’s coefficient (r)] were studied with respect to LTC.

Results

Microvesicular steatosis was seen in 42/50 mice. 1H-MRS values showed normal to moderately elevated liver fat content. Visual scoring and DIA of ORO-sections correlated moderately with LTC at r = 0.59 and r = 0.49 (P < 0.001), respectively. 1H-MRS, PDFF and mDixon correlated significantly better, at r = 0.74, r = 0.75 and r = 0.82, respectively.

Conclusion

Non-invasively determined MR measures of normal to moderately elevated liver fat in mice had a higher correlation with LTC than invasive histopathological measures. Where available, MR is the preferred method for fat quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DIA:

Digital image analysis

H&E:

Haematoxylin and eosin

LTC:

Liver triglyceride content

MRI:

Magnetic Resonance Imaging

1H-MRS:

1H Magnetic Resonance Spectroscopy

NAFLD:

Non-alcoholic fatty liver disease

NAS:

NAFLD Activity Score

NASH:

Non-alcoholic steatohepatitis

ORO:

Oil Red-O

References

  1. Franzen LE, Ekstedt M, Kechagias S, Bodin L (2005) Semiquantitative evaluation overestimates the degree of steatosis in liver biopsies: a comparison to stereological point counting. Mod Pathol 18:912–916

    Article  PubMed  Google Scholar 

  2. El-Badry AM, Breitenstein S, Jochum W, Washington K, Paradis V, Rubbia-Brandt L, Puhan MA, Slankamenac K, Graf R, Clavien PA (2009) Assessment of hepatic steatosis by expert pathologists: the end of a gold standard. Ann Surg 250:691–697

    Article  PubMed  Google Scholar 

  3. Bancroft JD, Stevens A (2007) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh

    Google Scholar 

  4. Levene AP, Kudo H, Armstrong MJ, Thursz MR, Gedroyc WM, Anstee QM, Goldin RD (2012) Quantifying hepatic steatosis—more than meets the eye. Histopathology 60:971–981

    Article  PubMed  Google Scholar 

  5. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  6. Kumar Srivastava N, Pradhan S, Mittal B, Kumar R, Nagana Gowda GA (2006) An improved, single step standardized method of lipid extraction from human skeletal muscle tissue. Anal Lett 39:297–315

    Article  CAS  Google Scholar 

  7. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749

    Article  PubMed  Google Scholar 

  8. Marsman HA, Heger M, Kloek JJ, Nienhuis SL, van Werven JR, Nederveen AJ, Ten Kate FJ, Stoker J, van Gulik TM (2011) Reversal of hepatic steatosis by omega-3 fatty acids measured non-invasively by 1H-magnetic resonance spectroscopy in a rat model. J Gastroenterol Hepatol 26:356–363

    Article  CAS  PubMed  Google Scholar 

  9. Bohte AE, van Werven JR, Bipat S, Stoker J (2011) The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 21:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  10. van Werven JR, Marsman HA, Nederveen AJ, Smits NJ, ten Kate FJ, van Gulik TM, Stoker J (2010) Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology 256:159–168

    Article  PubMed  Google Scholar 

  11. Permutt Z, Le TA, Peterson MR, Seki E, Brenner DA, Sirlin C, Loomba R (2012) Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease—MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 36:22–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim H, Taksali SE, Dufour S, Befroy D, Goodman TR, Petersen KF, Shulman GI, Caprio S, Constable RT (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 59:521–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Machann J, Thamer C, Schnoedt B, Stefan N, Haring HU, Claussen CD, Fritsche A, Schick F (2006) Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized 1H-MR spectroscopy. Magn Reson Med 55:913–917

    Article  CAS  PubMed  Google Scholar 

  14. Hockings PD, Changani KK, Saeed N, Reid DG, Birmingham J, O’Brien P, Osborne J, Toseland CN, Buckingham RE (2003) Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats. Diabetes Obes Metab 5:234–243

    Article  CAS  PubMed  Google Scholar 

  15. van Werven JR, Marsman HA, Nederveen AJ, ten Kate FJ, van Gulik TM, Stoker J (2012) Hepatic lipid composition analysis using 3.0-T MR spectroscopy in a steatotic rat model. Magn Reson Imaging 30:112–121

    Article  PubMed  Google Scholar 

  16. Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT (1999) Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo. Am J Physiol 276:E977–E989

    CAS  PubMed  Google Scholar 

  17. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468

    Article  CAS  PubMed  Google Scholar 

  18. Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, van Bilsen M, Bakker J, Binder CJ, Lutjohann D, Staels B, Hofker MH, Shiri-Sverdlov R (2012) LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 7:e30668. doi:10.1371/journal.pone.0030668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zaitoun AM, Al Mardini H, Awad S, Ukabam S, Makadisi S, Record CO (2001) Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis C. J Clin Pathol 54:461–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Livingstone R, Begovatz P, Link S, Nowotny B, Klueppelholz B, Giani G, Bunke J, Roden M, Hwang J et al (2012) Pancreatic and hepatic fat measurements using 1H MRS and mDIXON with flexible echo times. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, pp 1301

  21. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26:347–359

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T 1 and noise. Magn Reson Med 58:354–364

    Article  PubMed  Google Scholar 

  23. Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24:784–790

    Article  PubMed  Google Scholar 

  24. Rosset A, Spadola L, Pysher L, Ratib O (2006) Informatics in radiology (infoRAD): navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation. Radiographics 26:299–308

    Article  PubMed  Google Scholar 

  25. Yokoo T, Shiehmorteza M, Hamilton G, Wolfson T, Schroeder ME, Middleton MS, Bydder M, Gamst AC, Kono Y, Kuo A, Patton HM, Horgan S, Lavine JE, Schwimmer JB, Sirlin CB (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bohte AE, Koot BG, van der Baan-Slootweg OH, van Werven JR, Bipat S, Nederveen AJ, Jansen PL, Benninga MA, Stoker J (2012) US cannot be used to predict the presence or severity of hepatic steatosis in severely obese adolescents. Radiology 262:327–334

    Article  PubMed  Google Scholar 

  27. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. Magn Reson Mater Phy 12:141–152

    Article  CAS  Google Scholar 

  28. Donner A, Zou GY (2002) Testing the equality of dependent intraclass correlation coefficients. J R Stat Soc D-Stat 51:367–379

    Article  Google Scholar 

  29. Goodman ZD (2007) Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 47(4):598–607

    Article  PubMed  Google Scholar 

  30. Hines CD, Yu H, Shimakawa A, McKenzie CA, Warner TF, Brittain JH, Reeder SB (2010) Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 254:119–128

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hu HH, Bornert P, Hernando D, Kellman P, Ma J, Reeder S, Sirlin C (2012) ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med 68:378–388

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW, Unalp-Arida A, Wilson LA, Chalasani N (2011) Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 55:654–659

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hamilton G, Middleton MS, Bydder M, Yokoo T, Schwimmer JB, Kono Y, Patton HM, Lavine JE, Sirlin CB (2009) Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging 30:145–152

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank N.M.A. Tiel and ARIA-personnel for assistance with animal handling, G.C.M. Grinwis MD, Ph.D. for discussions on mice pathology, M. Froeling Ph.D. for assistance with the DIA–ORO, C.B. Sirlin MD for distributing the Lipoquant plugin for OsiriX, and K.M. Moerman Ph.D. for assistance with revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurgen H. Runge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (DOC 44 kb)

Supplementary Material S2 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runge, J.H., Bakker, P.J., Gaemers, I.C. et al. Measuring liver triglyceride content in mice: non-invasive magnetic resonance methods as an alternative to histopathology. Magn Reson Mater Phy 27, 317–327 (2014). https://doi.org/10.1007/s10334-013-0414-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0414-3

Keywords

Navigation