Skip to main content
Log in

Metabolic changes in the rat brain after a photochemical lesion treated by stem cell transplantation assessed by 1H MRS

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Metabolite changes in an experimental lesion in the rat cortex and in the contralateral hemisphere after the intravenous administration of mesenchymal stem cells (MSCs) were assessed by proton MR spectroscopy to verify the impact of the cell treatment on the brain tissue.

Materials and methods

Wistar rats with a photochemical cortical lesion and transplanted MSCs or sham transplanted rats were examined. Proton spectra were obtained from the lesion and from the contralateral cortex.

Results

Magnetic resonance spectroscopy revealed a gradual recovery of the damaged tissue; however, we found no significant differences in metabolite concentrations in the lesioned hemisphere between treated and untreated animals. Higher concentrations of glutamate and N-acetyl aspartate were found in the contralateral hemisphere in cell-treated animals compared to untreated ones. Lesioned animals showed neurogenesis in the contralateral hemisphere; the number of newly generated cells in stem cell-treated animals was 50% higher than those observed in untreated animals.

Conclusion

No direct impact of cell transplantation was observed in the lesion. However, changes in the contralateral hemisphere suggest that the transplanted MSCs might stimulate repair processes and plasticity resulting in the generation of newborn cells, which might enable the faster adoption of the damaged tissue’s function by healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3: 537–544

    Article  PubMed  CAS  Google Scholar 

  2. Ourednik V, Ourednik J, Park KI, Snyder EY (1999) Neural stem cells—a versatile tool for cell replacement and gene therapy in the central nervous system. Clin Genet 56: 267–278

    Article  PubMed  CAS  Google Scholar 

  3. Svendsen CN, Smith AG (1999) New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 22: 357–364

    Article  PubMed  CAS  Google Scholar 

  4. Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, Syková E (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50: 767–776

    Article  PubMed  Google Scholar 

  5. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74

    Article  PubMed  CAS  Google Scholar 

  6. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96: 10711–10716

    Article  PubMed  CAS  Google Scholar 

  7. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174(1): 11–20

    Article  PubMed  Google Scholar 

  8. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M (2001) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12: 559–563

    Article  PubMed  CAS  Google Scholar 

  9. Wu J, Sun Z, Sun H, Wu J, Weisel RD, Keating A, Li Z, Feng Z, Li RK (2008) Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16(10): 993–1005

    Article  PubMed  Google Scholar 

  10. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1): 96–104

    Article  PubMed  CAS  Google Scholar 

  11. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5): 1076–1084

    Article  PubMed  CAS  Google Scholar 

  12. Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB (1992) Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res 594: 279–283

    Article  PubMed  CAS  Google Scholar 

  13. Hawrylak N, Ghosh P, Broadus J, Schlueter C, Greenough WT, Lauterbur PC (1993) Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurol 121: 81–92

    Article  Google Scholar 

  14. Shen T, Weissleder R, Papisov M, Bogdanov AJ, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29: 599–604

    Article  PubMed  CAS  Google Scholar 

  15. Bulte JW, Brooks RA, Moskowitz BM, Bryant LHJ, Frank JA (1998) T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): theory and experiment. Acad Radiol 5: S137–S140

    Article  PubMed  Google Scholar 

  16. Bulte JW, Brooks RA, Moskowitz BM, Bryant LHJ, Frank JA (1999) Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn Reson Med 42: 379–384

    Article  PubMed  CAS  Google Scholar 

  17. Bulte JW, Zhang SC, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96: 15256–15261

    Article  PubMed  CAS  Google Scholar 

  18. Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Bryja V, Andersson B, Burian M, Hájek M, Syková E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76(2): 232–243

    Article  PubMed  Google Scholar 

  19. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17: 497–504

    Article  PubMed  CAS  Google Scholar 

  20. Tkác I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41: 649–656

    Article  PubMed  Google Scholar 

  21. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30: 672–679

    Article  PubMed  CAS  Google Scholar 

  22. Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55: 1185–1193

    Article  PubMed  Google Scholar 

  23. Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M (2008) Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke 39(9): 2571–2577

    Article  PubMed  Google Scholar 

  24. Eaves CJ, Cashman JD, Kay RJ, Dougherty GJ, Otsuka T, Gaboury LA, Hogge DE, Lansdorp PM, Eaves AC, Humphries RK (1991) Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood 78: 110–117

    PubMed  CAS  Google Scholar 

  25. Maysinger D, Berezovskaya O, Fedoroff S (1996) The hematopoietic cytokine colony stimulating factor 1 is also a growth factor in the CNS: (II). Microencapsulated CSF-1 and LM-10 cells as delivery systems. Exp Neurol 141: 47–56

    Article  PubMed  CAS  Google Scholar 

  26. Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L, Chen J, Xu Y, Gautam S, Mahmood A, Chopp M (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69(5): 687–691

    Article  PubMed  CAS  Google Scholar 

  27. Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetyl aspartate in neurons, oligodendrocyte- type-2 astrocyte progenitors and immature oligodendrocytes in vitro. J Neurochem 59: 55–61

    Article  PubMed  CAS  Google Scholar 

  28. Baslow MH (2002) Evidence supporting a role for N-acetyl-L-aspartate as molecular water pump in myelinated neurons in the central nervous system: an analytical review. Neurochem Int 40: 295–300

    Article  PubMed  CAS  Google Scholar 

  29. Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28: 941–953

    Article  PubMed  CAS  Google Scholar 

  30. Demougeot C, Marie C, Giroud M, Beley A (2004) N-acetylaspartate: a literature review of animal research on brain ischaemia. J Neurochem 90: 776–783

    Article  PubMed  CAS  Google Scholar 

  31. Al-Samsam RH, Alessandri B, Bullock R (2000) Extracellular N-acetyl-aspartate as a biochemical marker of the severity of neuronal damage following experimental acute traumatic brain injury. J Neurotrauma 17(1): 31–39

    Article  PubMed  CAS  Google Scholar 

  32. Puri BK, Smith HC, Cox IJ, Sargentoni J, Savic G, Maskill DW, Frankel HL, Ellaway PH, Davey NJ (1998) The human motor cortex after incomplete spinal cord injury: an investigation using proton magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 65(5): 748–754

    Article  PubMed  CAS  Google Scholar 

  33. Likavčanová K, Urdzíková L, Hájek M, Syková E (2008) Metabolic changes in the thalamus after spinal cord injury followed by proton magnetic resonance spectroscopy. Magn Reson Med 59(3): 499–506

    Article  PubMed  Google Scholar 

  34. Escartin C, Valette J, Lebon V, Bonvento G (2006) Neuron– astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem 99: 393–401

    Article  PubMed  CAS  Google Scholar 

  35. Horner PJ, Thallmair M, Gage FH (2002) Defining the NG2-expressing cell of the adult CNS. J Neurocytol 31: 469–480

    Article  PubMed  CAS  Google Scholar 

  36. Levine JM, Reynolds R (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelinization. Exp Neurol 160: 333–347

    Article  PubMed  CAS  Google Scholar 

  37. McTigue DM, Wei P, Stokes BT (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21: 3392–3400

    PubMed  CAS  Google Scholar 

  38. Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW (2004) The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127: 813–820

    Article  PubMed  CAS  Google Scholar 

  39. Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161: 169–186

    Article  PubMed  CAS  Google Scholar 

  40. Verkhratsky A, Hettenmann H (1996) Calcium signaling in glial cells. Trends Neurosci 19: 346–352

    Article  PubMed  CAS  Google Scholar 

  41. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208–215

    Article  PubMed  CAS  Google Scholar 

  42. Haydon P (2001) Glia. Listening and talking to the synapse. Nat Rev Neurosci 2: 185–193

    Article  PubMed  CAS  Google Scholar 

  43. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signaling. Nature 369: 744–747

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Herynek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herynek, V., Růžičková, K., Jendelová, P. et al. Metabolic changes in the rat brain after a photochemical lesion treated by stem cell transplantation assessed by 1H MRS. Magn Reson Mater Phy 22, 211–220 (2009). https://doi.org/10.1007/s10334-009-0166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-009-0166-2

Keywords

Navigation