Skip to main content
Log in

The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356, 1990), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308, 1990), the modified Cholesky decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659, 1992), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, 1993), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390, 1995) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44, 2000; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210, 2003). The widely applied LAMBDA method is based on the Least Squares Ambiguity Search (LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131, 2002) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chen D, Lachapelle G (1995) A comparison of the FASF and least-squares search algorithms for on-the-fly ambiguity resolution, navigation. J Inst Navig 42(2):371–390

    Google Scholar 

  • Counselman CC, Gourevitch SA (1981) Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system. IEEE Trans Geosci Rem Sens GE 19(4):244–252. doi:10.1109/TGRS.1981.350379

    Article  Google Scholar 

  • Euler H-J, Landau H (1992) Fast GPS ambiguity resolution on-the-fly for real-time application. In: Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, 17–20 March, pp 650–659

  • Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution approach “FARA”: theory and first results. Manuscr Geod 15(4):325–356

    Google Scholar 

  • Grafarend E (2000) Mixed integer-real valued adjustment (IRA) problems. GPS Solut 4(2):31–44. doi:10.1007/PL00012840

    Article  Google Scholar 

  • Hamilton WC (1964) Statistics in physics science, estimation, hypothesis testing and least squares. The Roland Press Company, New York

    Google Scholar 

  • Han S, Rizos C (1996) Validation and rejection criteria for integer least-squares estimation. Surv Rev 33(260):375–383

    Google Scholar 

  • Hatch R (1990) Instantaneous ambiguity resolution. In: Proceedings of KIS’90, Banff, Canada, 10–13 September, pp 299–308

  • Hoffmann-Wellenhof B, Lichtenegger H, Collins J (2001) GPS theory and practice. Springer, Wien

    Google Scholar 

  • Kim D, Langley RB (2000a) GPS ambiguity resolution and validation: methodologies, trends and issues. Presented at the 7th GNSS workshop and international symposium on GPS/GNSS, Seoul, Korea

  • Kim D, Langley RB (2000b) A search space optimization technique for improving ambiguity resolution and computational efficiency. Earth Planets Space 52:807–812

    Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lachapelle G, Cannon ME, Lu G (1992) High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution. Mar Geod 15:253–269

    Article  Google Scholar 

  • Leick A (1995) GPS satellite surveying, 2nd edn. Wiley, New York

  • Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Lenstra AK, Lenstra HW, Lovacz L (1982) Factoring polynomials with rational coefficients. Math Ann 261:515–534. doi:10.1007/BF01457454

    Article  Google Scholar 

  • Lou L, Grafarend E (2003) GPS integer ambiguity resolution by various decorrelation methods. Zeitschrift für Vermessungswesen 3:203–210

    Google Scholar 

  • Mader GL (1990) Ambiguity function techniques for GPS phase initialization and kinematic solutions. Proc GPS 90:1233–1246

    Google Scholar 

  • Remondi BW (1984) Using the global positioning system (GPS) phase observable for relative geodesy: modeling, processing and results. Ph.D. dissertation, Center for Space Research, University of Texas at Austin

  • Ruland R, Leick A (1985) Application of GPS in a high precision engineering survey network. In: Proceedings of the first international symposium on precise positioning with the GPS. US Department of Commerce, Rockville, MD

  • Strang G, Borre K (1997) Linear algebra, geodesy and GPS. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  • Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, August 1993. Also in Delft Geodetic Computing Centre LGR series no. 6

  • Teunissen PJG (1994) A new method for fast carrier phase ambiguity estimation. In: Proceedings of the IEEE PLANS’94, Las Vegas, NV, 11–15 April, 1994, pp 562–573

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82. doi:10.1007/BF00863419

    Article  Google Scholar 

  • Teunissen PJG (1998) GPS carrier phase ambiguity fixing concepts. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 319–388

    Google Scholar 

  • Xu G (2002) A general criterion of integer ambiguity search. J Glob Position Syst 1(2):121–131

    Google Scholar 

  • Xu G (2003) GPS—theory, algorithms and applications. Springer, Berlin

    Google Scholar 

  • Xu G (2004) MFGsoft software user manual. GFZ Scientific Technical Report STR 04/17, Potsdam

  • Xu P (2001) Random simulation and GPS decorrelation. J Geod 75:408–423. doi:10.1007/s001900100192

    Article  Google Scholar 

Download references

Acknowledgments

This paper presents part of the research results of the DFG project GR 323/44-2/3, which is sponsored by the Deutsche Forschungsgemeinschaft (DFG). The third author is supported by the scholarship from the Ministry of Baden-Württemberg at the Institute of Geodesy, Stuttgart University, Germany and the National Natural Science Foundation of China (No. 40671155). An anonymous reviewer provided us with detailed constructive comments and remarks in the early version of this paper. Prof. Leick provided editorial corrections and comments that helped in clarifying our main idea with respect to some important references. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqing Cai.

Appendix: Proof of orthogonal decomposition of objective function

Appendix: Proof of orthogonal decomposition of objective function

In this appendix we will derive the orthogonal decomposition in linear model algebraically and geometrically. We begin with the linear Gauss–Markov model

$$ \begin{aligned}& {\mathbf{y}} = {\mathbf{A}}{\varvec{\upxi}} + {\mathbf{B}}{\varvec{\upeta}} + {\mathbf{e}} = {\mathbf{G}}{\varvec{\upgamma}} + {\mathbf{e}} \\ &{\text{where}}\;{\mathbf{G}} = [{\mathbf{A\;B}}],{\varvec{\upgamma}} = [{\varvec{\upxi^{\prime}\;{\varvec{\upeta^{\prime}}}}}]^{\prime},{\mathbf{y}} \in {\mathbb{R}}^{n},{\varvec{\upxi}} \in {\mathbb{R}}^{{m_{1}}},{\varvec{\upeta}} \in {\mathbb{R}}^{{m_{2}}} \\ & {\it{E}}\{{\mathbf{y}}\} = {\varvec{\rm{A}\upxi}} + {\varvec{\rm{B}\upeta}},{\it{D}}\{{\mathbf{y}}\} = {\varvec{\Upsigma}}_{{\mathbf{y}}}. \\ \end{aligned} $$
(30)

The best linear unbiased estimator (BLUE) is

$$ \begin{aligned}{\hat{\varvec{\upgamma}}}& =\left[{\begin{array}{l}{{\hat{\varvec{\upxi}}}} \\ {{\hat{\varvec{\upeta}}}} \\\end{array}} \right] =\left\{{[{\mathbf{A}}\;{\mathbf{B}}]^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} [{\mathbf{A}}\;{\mathbf{B}}]} \right\}^{- 1}[{\mathbf{A}}\;{\mathbf{B}}]^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{y}} \\ {\hat{\varvec{\upxi}}} &\in{\mathbb{R}}^{{m_{1}}},\quad{\hat{\varvec{\upeta}}} \in{\mathbb{R}}^{{m_{2}}} \\ \end{aligned} $$
(31)

together with the residual vector

$$ {\hat{\mathbf{e}}} = {\mathbf{y}} - {\mathbf{A}}\hat{\varvec{\upxi}} - {\mathbf{B}}{\hat{\varvec{\upeta}}} = {\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}} $$
(32)

First we address the orthogonality of error, residual and parameter vectors and then study the orthogonality of the two parameter spaces when one set is conditioned on other set.

Applying the Pythagorean Theorem in a linear model, we have

$$ {\mathbf{y^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1} {\mathbf{y}} = {\hat{\mathbf{y}}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\hat{\mathbf{y}}} + {\hat{\mathbf{e}}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\hat{\mathbf{e}}} $$
(33)

or in the format of the weighted squared norm

$$ ||{\mathbf{y}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} =||{\hat{\mathbf{y}}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} +||{\hat{\mathbf{e}}}||_{{{\varvec{\Upsigma}}_{{{\mathbf{y}}}}^{- 1}}}^{2} $$
(34)

i.e. the total sum of squares equals the sum of squares of adjusted observation vector and squares of the residual vector. Further, we can express this with the adjusted parameter vector

$$ \begin{aligned} ({\mathbf{y}} - {\mathbf{G}} {\varvec{\upgamma}})^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} ({\mathbf{y}} - {\mathbf{G}}{\varvec{\upgamma}})&= [{\mathbf{y}} - {\hat{\mathbf{G}}}{\varvec{\upgamma}} + {\mathbf{G}}({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})]^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} [{\mathbf{y}} - {\hat{\mathbf{G}}}{\varvec{{\upgamma}}} + {\mathbf{G}}({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})] \\ & = ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}})^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}}) + ({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})^{\prime}{\mathbf{G}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}}({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}}) \\ &\quad + ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}})^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}}({\mathbf{y}} - {\mathbf{G}}{\varvec{\upgamma}}) + ({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})^{\prime}{\mathbf{G}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}}) \\ & = ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}})^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}}) + ({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})^{\prime}{\mathbf{G}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}}({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}}) \\ & ={\hat{\mathbf{e}}}^{\prime}{{\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1} {\hat{\mathbf{e}}} + ({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}})^{\prime}{\mathbf{G}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}}({\hat{\varvec{\upgamma}}} - {\varvec{\upgamma}}) \\ & = {\hat{\mathbf{e}}}^{\prime}\varvec{\Upsigma}_{{\mathbf{y}}}^{- 1} {\hat{\mathbf{e}}} + {\varvec{\Updelta}} \\ \end{aligned} $$
(35)

since \( {\mathbf{G}}^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}}) = ({\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}})^{\prime}{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}} = 0. \) This can be also represented in the weighted squared norm

$$ ||{\mathbf{y}} - {\mathbf{G}}{\varvec{\upgamma}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} =||{\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma}}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} +||{\hat{\varvec{\upgamma}}} -{\varvec{\upgamma}}||_{{{\varvec{\Upsigma}}_{{{\hat{\varvec{\upgamma}}}}}^{- 1}}}^{2} $$
(36)

This is the first step of orthogonal decomposition of the objective function. The geometric illustration of both orthogonal decompositions can be found in Fig. 1a.

Fig. 1
figure 1

A geometry of the orthogonal decomposition of \( ||{\mathbf{y}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} \,{\text{and}}\,||{\mathbf{y}} - {\mathbf{G}}{\varvec{\upgamma}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} \)

Let us consider the second term of the sum of squares of the error vector in Eq. 36 and assume that the second parameter set is given as \( {\varvec{\upeta}} = {\bar{\varvec{\upeta }}}, \) which has to be conditioned by the first parameter set, then we have

$$ \begin{aligned}||{\hat{\varvec{\upgamma}}} -{\varvec{\upgamma}}||_{{{\varvec{\Upsigma}}_{{{\hat{\varvec{\upgamma}}}}}^{- 1}}}^{2} &= ({\hat{\varvec{\upgamma}}} -{\varvec{\upgamma}})^{\prime}{\mathbf{G^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1} {\mathbf{G}}({\hat{\varvec{\upgamma}}} -{\varvec{\upgamma}}) \\ & = [({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}})^{\prime}]\left[{\begin{array}{ll}{{\mathbf{A^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1}{\mathbf{A}}} & {{\mathbf{A^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{-1} {\mathbf{B}}} \\ {{\mathbf{B^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1} {\mathbf{A}}} &{{\mathbf{B^{\prime}\varvec{\Upsigma}}}_{{\mathbf{y}}}^{- 1}{\mathbf{B}}} \\ \end{array}} \right]\left[{\begin{array}{ll} {{\hat{\varvec{\upxi}}} -{\varvec{\upxi}}} \\ {{\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}}} \\ \end{array}} \right] \\ & =[({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}})^{\prime}]\left[{\begin{array}{ll}{{\mathbf{N}}_{11}} & {{\mathbf{N}}_{12}} \\ {{\mathbf{N}}_{21}} & {{\mathbf{N}}_{22}} \\ \end{array}} \right]\left[{\begin{array}{ll} {{\hat{\varvec{\upxi}}} -{\varvec{\upxi}}} \\ {{\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}}} \\ \end{array}} \right] \\ & =({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) + ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{21}({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) \\ &\quad+({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{12} ({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) + ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{22}({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) \\ & =({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) + 2({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{12} ({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) + ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{22}({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) \\\end{aligned} $$
(37)

With the relationship 27 we have \( ({\hat{\varvec{\upxi}}} - {\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {\bar{\varvec{\upeta}}}}}) = -{\mathbf{N}}_{11}^{- 1} {\mathbf{N}}_{12} ({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) \) and note that the variance-covariance of the estimators with the Schur complement are

$$ \begin{aligned}{\varvec{\Upsigma}}_{{\hat{\varvec{\upeta}}}} &=({\mathbf{N}}_{22} - {\mathbf{N}}_{21} {\mathbf{N}}_{11}^{- 1}{\mathbf{N}}_{12})\\{\varvec{\Upsigma}}_{{\bar{\varvec{\upxi}}}_{{{\varvec{|\upeta}}} ={{{{{\bar{\varvec{\upeta}}}}}}}}} &= {\varvec{\Upsigma}}_{{\hat{\varvec{\upxi}}}} - {\mathbf{N}}_{11}^{- 1} {\mathbf{N}}_{12}\Upsigma_{{\hat{\varvec{\upeta}}}} {\mathbf{N}}_{21} {\mathbf{N}}_{11}^{-1} = {\mathbf{N}}_{11}^{- 1}\end{aligned} $$
(38)

Then

$$\begin{aligned}||{\hat{\varvec{\upgamma}}} -{\varvec{\upgamma}}||_{{{\varvec{\Upsigma}}_{{\hat{\varvec{\upgamma}}}}^{- 1}}}^{2} & = ({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) - 2({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\varvec{\bar{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}}) +({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{22} ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}}) \\ & = ({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) - ({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}}) -({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}}) +({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{22} ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}}) \\ & = ({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} [({\hat{\varvec{\upxi}}} - {\varvec{\upxi}}) - ({\hat{\varvec{\upxi}}} -{\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}})] -({\hat{\varvec{\upxi}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\hat{\varvec{\upxi}}} - {\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}}) +({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}})^{\prime}{\mathbf{N}}_{22} ({\hat{\varvec{\upeta}}} -{\bar{\varvec{\upeta}}}) \\ & = ({\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}} -{\varvec{\upxi}})^{\prime}{\mathbf{N}}_{11} ({\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}} - {\varvec{\upxi}}) +({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}})^{\prime}({\mathbf{N}}_{22} - {\mathbf{N}}_{21}{\mathbf{N}}_{11}^{- 1} {\mathbf{N}}_{12})({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) \\ & = ({\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}} -{\varvec{\upxi}})^{\prime}{\varvec{\Upsigma}}_{{{\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}}}}^{- 1}({\bar{\varvec{\upxi}}}_{{|{\varvec{\upeta}} = {{\bar{\varvec{\upeta}}}}}} -{\varvec{\upxi}}) + ({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}})^{\prime}{\varvec{\Upsigma}}_{{{\hat{\varvec{\upeta}}}}}^{-1} ({\hat{\varvec{\upeta}}} - {\bar{\varvec{\upeta}}}) \\\end{aligned}$$
(39)

In terms of the weighted squared norm, it can be expressed as

$$ \begin{gathered} ||{\mathbf{y}} - {\mathbf{G}}\varvec{\upgamma }||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{ - 1} }}^{2} = ||{\mathbf{y}} - {\mathbf{G}}{\hat{\varvec{\upgamma }}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{ - 1} }}^{2} + ||\hat{{\varvec{\upgamma}} } - \varvec{\upgamma }||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{ - 1} }}^{2} \hfill \\ {\text{i}} . {\text{e}} .\hfill \\ ||{\mathbf{y}} - {\mathbf{A}}\varvec{\upxi } - {\mathbf{B}}\varvec{\upeta}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{ - 1} }}^{2} = ||{\hat{\mathbf{e}}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{ - 1} }}^{2} + ||\bar{\varvec{\upxi }}_{{{|\varvec{{\upeta}= {\bar{\varvec{\upeta}}}}}}} - \user2{\upxi }||_{{{\varvec{\Upsigma}}_{\bar{{\varvec{\upxi}}}|_{\varvec{\upeta} = {\bar{\varvec{\upeta}}}}}^{ - 1} }}^{2} + ||{\hat{\varvec{\upeta }}} - {\bar{\varvec{\upeta} }}||_{{{\varvec{\Upsigma}}_{\hat{\varvec{\upeta}}}^{ - 1} }}^{2} \hfill \\ \end{gathered} $$
(40)

Equation (40) explains the so-called orthogonal decomposition (Eq. 6) generally used in mixed integer least squares. Fig. 2a illustrates the geometry of the above.

Fig. 2
figure 2

A geometry of the orthogonal decomposition of \( ||{\mathbf{y}} - {\mathbf{A}}{\varvec{\upxi}} - {\mathbf{B}}{\varvec{\upeta}}||_{{{\varvec{\Upsigma}}_{{\mathbf{y}}}^{- 1}}}^{2} \)when the coordinate parameter vector is conditioned on the given ambiguity vector

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Grafarend, E.W. & Hu, C. The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations. GPS Solut 13, 221–230 (2009). https://doi.org/10.1007/s10291-008-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-008-0115-y

Keywords