Skip to main content

Advertisement

Log in

Anxiety and dysautonomia symptoms in patients with a NaV1.7 mutation and the potential benefits of low-dose short-acting guanfacine

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility.

Methods

We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology.

Results

Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree.

Conclusion

Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper.

References

  1. Abela AR, Chudasama Y (2014) Noradrenergic alpha2A-receptor stimulation in the ventral hippocampus reduces impulsive decision-making. Psychopharmacology 231:521–531

    Article  CAS  PubMed  Google Scholar 

  2. Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al Dhaheri N, Wu N, Zhao S, Wu Z, Blank RD, Zhang J, Raggio C, Halanski M, Shen J, Noonan K, Qiu G, Nemeth B, Sund S, Dunwoodie SL, Chapman G, Glurich I, Steiner RD, Wohler E, Martin R, Sobreira NL, Giampietro PF (2020) KIAA1217: a novel candidate gene associated with isolated and syndromic vertebral malformations. Am J Med Genet A 182:1664–1672

    Article  CAS  PubMed  Google Scholar 

  4. Alamo C, Lopez-Munoz F, Sanchez-Garcia J (2016) Mechanism of action of guanfacine: a postsynaptic differential approach to the treatment of attention deficit hyperactivity disorder (ADHD). Actas Esp Psiquiatr 44:107–112

    PubMed  Google Scholar 

  5. Albadrani A (2017) Clonidine is effective for the treatment of primary idiopathic hyperhidrosis and hot flushes: a case report. J Med Case Rep 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA (2022) Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology 47:247–259

    Article  CAS  PubMed  Google Scholar 

  7. Arnsten AF (2009) The emerging neurobiology of attention deficit hyperactivity disorder: the key role of the prefrontal association cortex. J Pediatr 154:I-S43

    PubMed  PubMed Central  Google Scholar 

  8. Arnsten AFT (2020) Guanfacine’s mechanism of action in treating prefrontal cortical disorders: successful translation across species. Neurobiol Learn Mem 176:107327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brackx W, Collaco RC, Theys M, Vander Cruyssen J, Bosmans F (2023) Understanding the physiological role of Na(V)1.9: challenges and opportunities for pain modulation. Pharmacol Ther 245:108416

    Article  CAS  PubMed  Google Scholar 

  10. Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM (2016) Near-perfect synaptic integration by Nav1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cannon SC (2018) Sodium channelopathies of skeletal muscle. Handb Exp Pharmacol 246:309–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caye A, Swanson JM, Coghill D, Rohde LA (2019) Treatment strategies for ADHD: an evidence-based guide to select optimal treatment. Mol Psychiatry 24:390–408

    Article  CAS  PubMed  Google Scholar 

  13. Chini M, Hanganu-Opatz IL (2021) Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci 44:227–240

    Article  CAS  PubMed  Google Scholar 

  14. Connor DF, Grasso DJ, Slivinsky MD, Pearson GS, Banga A (2013) An open-label study of guanfacine extended release for traumatic stress related symptoms in children and adolescents. J Child Adolesc Psychopharmacol 23:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conrad F, Baumgartner H, Wiedermann C, Klein G (1983) Clonidine and hyperhidrosis. Ann Intern Med 99:570

    Article  CAS  PubMed  Google Scholar 

  16. Devigili G, Eleopra R, Pierro T, Lombardi R, Rinaldo S, Lettieri C, Faber CG, Merkies ISJ, Waxman SG, Lauria G (2014) Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 155:1702–1707

    Article  CAS  PubMed  Google Scholar 

  17. Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S, Tyrrell L, Marshall L, Waxman SG (2005) Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128:1847–1854

    Article  CAS  PubMed  Google Scholar 

  18. Dormer A, Narayanan M, Schentag J, Achinko D, Norman E, Kerrigan J, Jay G, Heydorn W (2023) A review of the therapeutic targeting of SCN9A and Nav1.7 for pain relief in current human clinical trials. J Pain Res 16:1487–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135:2585–2612

    Article  PubMed  PubMed Central  Google Scholar 

  20. Estacion M, Dib-Hajj SD, Benke PJ, Te Morsche RH, Eastman EM, Macala LJ, Drenth JP, Waxman SG (2008) NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 28:11079–11088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fahrenholz JM II, Shibao CA (2023) Mast cell activation and autonomic disorders. Primer on the autonomic nervous system. Elsevier, pp 627–629

    Chapter  Google Scholar 

  22. Fesharaki-Zadeh A, Lowe N, Arnsten AF (2023) Clinical experience with the α2A-adrenoceptor agonist, guanfacine, and N-acetylcysteine for the treatment of cognitive deficits in “Long-COVID19.” Neuroimmunol Rep 3:100154

    Article  CAS  Google Scholar 

  23. Fox H, Sinha R (2014) The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals. Adv Pharmacol 69:217–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fox HC, Seo D, Tuit K, Hansen J, Kimmerling A, Morgan PT, Sinha R (2012) Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings. J Psychopharmacol 26:958–972

    Article  PubMed  PubMed Central  Google Scholar 

  25. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, Cheshire WP, Chelimsky T, Cortelli P, Gibbons CH, Goldstein DS, Hainsworth R, Hilz MJ, Jacob G, Kaufmann H, Jordan J, Lipsitz LA, Levine BD, Low PA, Mathias C, Raj SR, Robertson D, Sandroni P, Schatz I, Schondorff R, Stewart JM, van Dijk JG (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21:69–72

    Article  PubMed  Google Scholar 

  26. Gilchrist J, Dutton S, Diaz-Bustamante M, McPherson A, Olivares N, Kalia J, Escayg A, Bosmans F (2014) Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem Biol 9:1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldstein DS (2020) The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res 30:299–315

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goodwin G, McMahon SB (2021) The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci 22:263–274

    Article  CAS  PubMed  Google Scholar 

  29. Han C, Hoeijmakers JG, Ahn HS, Zhao P, Shah P, Lauria G, Gerrits MM, te Morsche RH, Dib-Hajj SD, Drenth JP, Faber CG, Merkies IS, Waxman SG (2012) Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability. Neurology 78:1635–1643

    Article  CAS  PubMed  Google Scholar 

  30. Han C, Hoeijmakers JG, Liu S, Gerrits MM, te Morsche RH, Lauria G, Dib-Hajj SD, Drenth JP, Faber CG, Merkies IS, Waxman SG (2012) Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 135:2613–2628

    Article  PubMed  Google Scholar 

  31. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, REDCap Consortium (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381

    Article  PubMed  Google Scholar 

  33. Im ST, Jo YY, Han G, Jo HJ, Kim YH, Park CK (2018) Dexmedetomidine inhibits voltage-gated sodium channels via alpha2-adrenoceptors in trigeminal ganglion neurons. Mediators Inflamm 2018:1782719

    Article  PubMed  PubMed Central  Google Scholar 

  34. Iwanami A, Saito K, Fujiwara M, Okutsu D, Ichikawa H (2020) Safety and efficacy of guanfacine extended-release in adults with attention-deficit/hyperactivity disorder: an open-label, long-term, phase 3 extension study. BMC Psychiatry 20:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson JP, Focken T, Khakh K, Tari PK, Dube C, Goodchild SJ, Andrez JC, Bankar G, Bogucki D, Burford K, Chang E, Chowdhury S, Dean R, de Boer G, Decker S, Dehnhardt C, Feng M, Gong W, Grimwood M, Hasan A, Hussainkhel A, Jia Q, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Namdari R, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Taron M, Waldbrook M, Weeratunge D, Wesolowski S, Williams A, Wilson M, Xie Z, Yoo R, Young C, Zenova A, Zhang W, Cutts AJ, Sherrington RP, Pimstone SN, Winquist R, Cohen CJ, Empfield JR (2022) NBI-921352, a first-in-class, Na(V)1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. Elife 11:e72468. https://doi.org/10.7554/eLife.72468

  36. Jones AR, Overly CC, Sunkin SM (2009) The allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10:821–828

    Article  CAS  PubMed  Google Scholar 

  37. Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J (2018) Mapping protein interactions of sodium channel Na(V)1.7 using epitope-tagged gene-targeted mice. EMBO J 37:427–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kenwood MM, Kalin NH, Barbas H (2022) The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 47:260–275

    Article  PubMed  Google Scholar 

  39. Kuritzky A, Hering R, Goldhammer G, Bechar M (1984) Clonidine treatment in paroxysmal localized hyperhidrosis. Arch Neurol 41:1210–1211

    Article  CAS  PubMed  Google Scholar 

  40. Lacerda AE, Kramer J, Shen KZ, Thomas D, Brown AM (2001) Comparison of block among cloned cardiac potassium channels by non-antiarrhythmic drugs. Eur Heart J Suppl 3:K23–K30

    Article  CAS  Google Scholar 

  41. Mantegazza M, Cestele S, Catterall WA (2021) Sodium channelopathies of skeletal muscle and brain. Physiol Rev 101:1633–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McKee SA, Potenza MN, Kober H, Sofuoglu M, Arnsten AF, Picciotto MR, Weinberger AH, Ashare R, Sinha R (2015) A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J Psychopharmacol 29:300–311

    Article  CAS  PubMed  Google Scholar 

  43. Mechler K, Banaschewski T, Hohmann S, Hage A (2022) Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol Ther 230:107940

    Article  CAS  PubMed  Google Scholar 

  44. Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH, Wang F, Malcangio M, Wood JN (2012) Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun. https://doi.org/10.1038/ncomms1795

    Article  PubMed  Google Scholar 

  45. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC (2019) Challenges and opportunities for therapeutics targeting the voltage-gated sodium channel isoform Na(V)1.7. J Med Chem 62:8695–8710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nickel K, Tebartz van Elst L, Domschke K, Glaser B, Stock F, Endres D, Maier S, Riedel A (2018) Heterozygous deletion of SCN2A and SCN3A in a patient with autism spectrum disorder and Tourette syndrome: a case report. BMC Psychiatry 18:248

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ota T, Yamamuro K, Okazaki K, Kishimoto T (2021) Evaluating guanfacine hydrochloride in the treatment of attention deficit hyperactivity disorder (ADHD) in adult patients: design, development and place in therapy. Drug Des Devel Ther 15:1965–1969

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pasierski M, Kolba W, Szulczyk B (2023) Guanfacine inhibits interictal epileptiform events and sodium currents in prefrontal cortex pyramidal neurons. Pharmacol Rep 75:331–341

    Article  PubMed  PubMed Central  Google Scholar 

  49. Payandeh J, Hackos DH (2018) Selective ligands and drug discovery targeting the voltage-gated sodium channel Nav1.7. Handb Exp Pharmacol 246:271–306

    Article  CAS  PubMed  Google Scholar 

  50. Peddareddygari LR, Grewal RP (2021) Intrafamilial phenotypic variability associated with the I1739V mutation in the SCN9A gene. Case Rep Neurol 13:135–139

    Article  PubMed  PubMed Central  Google Scholar 

  51. Posey JE, Martinez R, Lankford JE, Lupski JR, Numan MT, Butler IJ (2017) Dominant transmission observed in adolescents and families with orthostatic intolerance. Pediatr Neurol 66:53–58.e55

    Article  PubMed  Google Scholar 

  52. Rees E, Carrera N, Morgan J, Hambridge K, Escott-Price V, Pocklington AJ, Richards AL, Pardinas AF, Investigators G, McDonald C, Donohoe G, Morris DW, Kenny E, Kelleher E, Gill M, Corvin A, Kirov G, Walters JTR, Holmans P, Owen MJ, O’Donovan MC (2019) Targeted sequencing of 10,198 samples confirms abnormalities in neuronal activity and implicates voltage-gated sodium channels in schizophrenia pathogenesis. Biol Psychiatry 85:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Remme CA (2023) SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 378:20220164

    Article  CAS  PubMed  Google Scholar 

  54. Rinne A, Birk A, Bunemann M (2013) Voltage regulates adrenergic receptor function. Proc Natl Acad Sci U S A 110:1536–1541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Funct 2:41

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salzer I, Ray S, Schicker K, Boehm S (2019) Nociceptor signalling through ion channel regulation via GPCRs. Int J Mol Sci. https://doi.org/10.3390/ijms20102488

    Article  PubMed  PubMed Central  Google Scholar 

  57. Savchenko VL, Boughter JD Jr (2011) Regulation of neuronal activation by Alpha2A adrenergic receptor agonist. Neurotox Res 20:226–239

    Article  CAS  PubMed  Google Scholar 

  58. Sivilotti L, Okuse K, Akopian AN, Moss S, Wood JN (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett 409:49–52

    Article  CAS  PubMed  Google Scholar 

  59. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W (2012) COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc 87:1196–1201

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sobreira N, Schiettecatte F, Boehm C, Valle D, Hamosh A (2015) New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum Mutat 36:425–431

    Article  PubMed  PubMed Central  Google Scholar 

  61. Solish N, Bertucci V, Dansereau A, Hong HC, Lynde C, Lupin M, Smith KC, Storwick G, Canadian Hyperhidrosis Advisory C (2007) A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: recommendations of the Canadian Hyperhidrosis Advisory Committee. Dermatol Surg 33:908–923

    CAS  PubMed  Google Scholar 

  62. Soriano A, Gutgsell TL, Davis MP (2014) Diencephalic storms from leptomeningeal metastases and leukoencephalopathy: a rare and clinically important complication. Am J Hosp Palliat Care 31:98–100

    Article  PubMed  Google Scholar 

  63. Srour H, Pandya K, Flannery A, Hatton K (2018) Enteral guanfacine to treat severe anxiety and agitation complicating critical care after cardiac surgery. Semin Cardiothorac Vasc Anesth 22:403–406

    Article  PubMed  Google Scholar 

  64. Stoetzer C, Martell C, de la Roche J, Leffler A (2017) Inhibition of voltage-gated Na+ channels by bupivacaine is enhanced by the adjuvants buprenorphine, ketamine, and clonidine. Region Anesth Pain M 42:462–468

    Article  CAS  Google Scholar 

  65. Strawn JR, Compton SN, Robertson B, Albano AM, Hamdani M, Rynn MA (2017) Extended release guanfacine in pediatric anxiety disorders: a pilot, randomized, placebo-controlled trial. J Child Adolesc Psychopharmacol 27:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanaka BS, Nguyen PT, Zhou EY, Yang Y, Yarov-Yarovoy V, Dib-Hajj SD, Waxman SG (2017) Gain-of-function mutation of a voltage-gated sodium channel Na(V)1.7 associated with peripheral pain and impaired limb development. J Biol Chem 292:9262–9272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor FB, Russo J (2001) Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 21:223–228

    Article  CAS  PubMed  Google Scholar 

  68. Torch EM (2000) Remission of facial and scalp hyperhidrosis with clonidine hydrochloride and topical aluminum chloride. South Med J 93:68–69

    Article  CAS  PubMed  Google Scholar 

  69. Tovote P, Fadok JP, Luthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331

    Article  CAS  PubMed  Google Scholar 

  70. van Coevorden MH, Schoofs MW, Venhovens J (2021) Paroxysmal localized hyperhidrosis, a case-report: when excessive sweating occurs in combination with severe headaches. Cephalalgia 41:1124–1127

    Article  PubMed  Google Scholar 

  71. van de Poll Y, Cras Y, Ellender TJ (2023) The neurophysiological basis of stress and anxiety-comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 17:1225758

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wadhawan S, Pant S, Golhar R, Kirov S, Thompson J, Jacobsen L, Qureshi I, Ajroud-Driss S, Freeman R, Simpson DM, Smith AG, Hoke A, Bristow LJ (2017) Na(V) channel variants in patients with painful and nonpainful peripheral neuropathy. Neurol Genet 3:e207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF (2007) Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129:397–410

    Article  CAS  PubMed  Google Scholar 

  74. Weaver J (2016) Clinical characterization of inherited erythromelalgia due to sodium channel mutations. Neurol Alert 35(9). https://www.reliasmedia.com/articles/137757-clinical-characterization-of-inherited-erythromelalgia-due-to-sodium-channel-mutations

  75. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8:186–194

    Article  CAS  PubMed  Google Scholar 

  76. Wilde AAM, Amin AS (2018) Clinical spectrum of SCN5A mutations: long QT syndrome, brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol 4:569–579

    Article  PubMed  Google Scholar 

  77. Wu S, Morgenstern A, Rice T, Coffey B (2022) Psychopharmacological strategies employing guanfacine in an adolescent girl with postural orthostatic tachycardia syndrome and severe posttraumatic stress disorder. J Child Adolesc Psychopharmacol 32:244–248

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xenakis MN, Kapetis D, Yang Y, Gerrits MM, Heijman J, Waxman SG, Lauria G, Faber CG, Westra RL, Lindsey PJ, Smeets HJ (2021) Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics. https://doi.org/10.1186/s12859-021-04119-2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xu J, Cao S, Hubner H, Weikert D, Chen G, Lu Q, Yuan D, Gmeiner P, Liu Z, Du Y (2022) Structural insights into ligand recognition, activation, and signaling of the alpha(2A) adrenergic receptor. Sci Adv 8:eabj5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu P, Chen A, Li Y, Xing X, Lu H (2019) Medial prefrontal cortex in neurological diseases. Physiol Genomics 51:432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang Y, Mis MA, Estacion M, Dib-Hajj SD, Waxman SG (2018) Na(V)1.7 as a pharmacogenomic target for pain: moving toward precision medicine. Trends Pharmacol Sci 39:258–275

    Article  CAS  PubMed  Google Scholar 

  82. Yu S, Shen S, Tao M (2023) Guanfacine for the treatment of attention-deficit hyperactivity disorder: an updated systematic review and meta-analysis. J Child Adolesc Psychopharmacol 33:40–50

    Article  CAS  PubMed  Google Scholar 

  83. Zeng SL, Sudlow LC, Berezin MY (2020) Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 15:39–52

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Z, Schmelz M, Segerdahl M, Quiding H, Centerholt C, Jureus A, Carr TH, Whiteley J, Salter H, Kvernebo MS, Orstavik K, Helas T, Kleggetveit IP, Lunden LK, Jorum E (2014) Exonic mutations in SCN9A (NaV1.7) are found in a minority of patients with erythromelalgia. Scand J Pain 5:217–225

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly funded by a research grant from Dysautonomia International (90097658) to M. Brock and F. Bosmans. The Research Foundation – Flanders and ERA-NET Neuron (co-)financed part of this work under G000220N and G0H8120N. R.C. Collaço is funded by a FWO junior postdoctoral fellowship under application 12Z3922N and M. Lammens is funded by a FWO fundamental research fellowship under application 1125923N. The work was also (partly) funded by the NIH under R01NS126398 (M. Brock and F. Bosmans), 3UM1HG006542 (D. Valle), the Banks Family Foundation, Bermuda (M. Brock) and the Skalka-Kronsberg family (M. Brock). A. Gurau is funded by the NIH T32CA126607 Award. S. Yamauchi is funded in part by the Subsidies for Current Expenditures to Private Institutions of Higher Education from the Promotion and Mutual Aid Corporation for Private Schools of Japan. We thank all members of the Valle, Brock, and Bosmans laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malcolm V. Brock or Frank Bosmans.

Ethics declarations

Conflict of interest

Authors disclose no competing financial or non-financial interests directly or indirectly related to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cássia Collaço, R., Lammens, M., Blevins, C. et al. Anxiety and dysautonomia symptoms in patients with a NaV1.7 mutation and the potential benefits of low-dose short-acting guanfacine. Clin Auton Res 34, 191–201 (2024). https://doi.org/10.1007/s10286-023-01004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-01004-1

Keywords

Navigation