Skip to main content

Advertisement

Log in

Autonomic nervous system function in women with anorexia nervosa

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Abnormalities in autonomic function have been observed in people with anorexia nervosa. However, the majority of investigations have utilised heart rate variability as the sole assessment of autonomic activity. The current study utilised a variety of methodologies to assess autonomic nervous system function in women with a current diagnosis of anorexia, a past diagnosis of anorexia who were weight-restored, and healthy controls.

Methods

The sample included 37 participants: 10 participants with anorexia, 17 weight-restored participants (minimum body mass index > 18.5 for minimum of 12 months) and 10 controls. Assessments of autonomic function included muscle sympathetic nerve activity (MSNA) using microneurography, heart rate variability, baroreflex sensitivity, blood pressure variability, head-up tilt table test, sudomotor function and assessment of plasma catecholamines.

Results

MSNA (bursts/min) was significantly decreased in both anorexia (10.22 ± 6.24) and weight-restored (17.58 ± 1.68) groups, as compared to controls (23.62 ± 1.01, p < 0.001 and p = 0.033, respectively). Participants with anorexia had a significantly lower standard deviation in heart rate, lower blood pressure variability and decreased sudomotor function as compared to controls. Weight-restored participants demonstrated decreased baroreflex sensitivity in response to head-up tilt as compared to controls.

Conclusion

Women with a current or previous diagnosis of anorexia have significantly decreased sympathetic activity, which may reflect a physiological response to decreased energy intake. During the state of starvation, women with anorexia also displayed decreased sudomotor function. The consequences of a sustained decrease in MSNA are unknown, and future studies should investigate autonomic function in long-term weight-restored participants to determine whether activity returns to normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data sets used in the current study are available from the corresponding author on reasonable request.

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, Washington

    Google Scholar 

  2. Hoek HW, Van Hoeken D (2003) Review of the prevalence and incidence of eating disorders. Int J Eat Disord 34(4):383–396

    PubMed  Google Scholar 

  3. Smink FR, van Hoeken D, Oldehinkel AJ, Hoek HW (2014) Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord 47(6):610–619

    PubMed  Google Scholar 

  4. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL (2006) Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 63(3):305–312

    PubMed  Google Scholar 

  5. Micali N, Hagberg KW, Petersen I, Treasure JL (2013) The incidence of eating disorders in the UK in 2000–2009: findings from the General Practice Research Database. BMJ Open 3(5):e002646

    PubMed  PubMed Central  Google Scholar 

  6. Steinhausen HC, Jensen CM (2015) Time trends in lifetime incidence rates of first-time diagnosed anorexia nervosa and bulimia nervosa across 16 years in a Danish nationwide psychiatric registry study. Int J Eat Disord 48(7):845–850

    PubMed  Google Scholar 

  7. Arcelus J, Mitchell AJ, Wales J, Nielsen S (2011) Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Arch Gen Psychiatry 68(7):724–731

    PubMed  Google Scholar 

  8. Papadopoulos FC, Ekbom A, Brandt L, Ekselius L (2009) Excess mortality, causes of death and prognostic factors in anorexia nervosa. Br J Psychiatry 194(1):10–17

    PubMed  Google Scholar 

  9. Nakai Y, Noma S, Fukusima M, Taniguchi A, Teramukai S (2016) Serum lipid levels in patients with eating disorders. Intern Med 55(14):1853–1857

    CAS  PubMed  Google Scholar 

  10. Sachs KV, Harnke B, Mehler PS, Krantz MJ (2016) Cardiovascular complications of anorexia nervosa: a systematic review. Int J Eat Disord 49(3):238–248

    PubMed  Google Scholar 

  11. Smythe J, Colebourn C, Prisco L, Petrinic T, Leeson P (2020) Cardiac abnormalities identified with echocardiography in anorexia nervosa: systematic review and meta-analysis. Br J Psychiatry 219:477–486

    Google Scholar 

  12. Giovinazzo S, Sukkar S, Rosa G, Zappi A, Bezante G, Balbi M et al (2019) Anorexia nervosa and heart disease: a systematic review. Eat Weight Disord Stud Anorex Bulim Obes 24(2):199–207

    Google Scholar 

  13. Vignaud M, Constantin J-M, Ruivard M, Villemeyre-Plane M, Futier E, Bazin J-E et al (2010) Refeeding syndrome influences outcome of anorexia nervosa patients in intensive care unit: an observational study. Crit Care (Lond, Engl) 14(5):R172

    Google Scholar 

  14. Casiero D, Frishman WH (2006) Cardiovascular complications of eating disorders. Cardiol Rev 14(5):227–231

    PubMed  Google Scholar 

  15. Jenkins ZM, Eikelis N, Phillipou A, Castle DJ, Wilding HE, Lambert EA (2021) Autonomic nervous system function in anorexia nervosa: a systematic review. Front Neurosci 15:705

    Google Scholar 

  16. Peyser D, Scolnick B, Hildebrandt T, Taylor JA (2020) Heart rate variability as a biomarker for anorexia nervosa: a review. Eur Eat Disord Rev 29:20–39

    PubMed  Google Scholar 

  17. Mazurak N, Enck P, Muth E, Teufel M, Zipfel S (2011) Heart rate variability as a measure of cardiac autonomic function in anorexia nervosa: a review of the literature. Eur Eat Disord Rev 19(2):87–99

    PubMed  Google Scholar 

  18. Esler M, Lambert E (2003) Reduced HRV and baroreflex sensitivity as universally applicable cardiovascular “risk factors”; waiting for the bubble to burst. Clin Auton Res 13(3):170–172

    PubMed  Google Scholar 

  19. Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 4:26

    PubMed  PubMed Central  Google Scholar 

  20. Kingwell BA, Thompson JM, Kaye DM, McPherson G, Jennings GL, Esler MD (1994) Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 90(1):234–240

    CAS  PubMed  Google Scholar 

  21. Martelli D, Silvani A, McAllen RM, May CN, Ramchandra R (2014) The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity. Am J Physiol Heart Circ Physiol 307(7):H1005–H1012

    CAS  PubMed  Google Scholar 

  22. Tonhajzerova I, Mestanikova A, Jurko A Jr, Grendar M, Langer P, Ondrejka I et al (2020) Arterial stiffness and haemodynamic regulation in adolescent anorexia nervosa versus obesity. Appl Physiol Nutr Metab 45(1):81–90

    PubMed  Google Scholar 

  23. Ishizawa T, Yoshiuchi K, Takimoto Y, Yamamoto Y, Akabayashi A (2008) Heart rate and blood pressure variability and baroreflex sensitivity in patients with anorexia nervosa. Psychosom Med 70(6):695–700

    PubMed  Google Scholar 

  24. Kollai M, Bonyhay I, Jokkel G, Szonyi L (1994) Cardiac vagal hyperactivity in adolescent anorexia nervosa. Eur Heart J 15(8):1113–1118

    CAS  PubMed  Google Scholar 

  25. Grassi G, Esler M (1999) How to assess sympathetic activity in humans. J Hypertens 17(6):719–734

    CAS  PubMed  Google Scholar 

  26. Westerhof BE, Gisolf J, Karemaker JM, Wesseling KH, Secher NH, Van Lieshout JJ (2006) Time course analysis of baroreflex sensitivity during postural stress. Am J Physiol Heart Circ Physiol 291(6):H2864–H2874

    CAS  PubMed  Google Scholar 

  27. Vaddadi G, Lambert E, Corcoran SJ, Esler MD (2007) Postural syncope: mechanisms and management. Med J Aust 187(5):299–304

    PubMed  Google Scholar 

  28. Casu M, Patrone V, Gianelli MV, Marchegiani A, Ragni G, Murialdo G et al (2002) Spectral analysis of R-R interval variability by short-term recording in anorexia nervosa. Eat Weight Disord 7(3):239–243

    CAS  PubMed  Google Scholar 

  29. Murialdo G, Casu M, Falchero M, Brugnolo A, Patrone V, Cerro PF et al (2007) Alterations in the autonomic control of heart rate variability in patients with anorexia or bulimia nervosa: correlations between sympathovagal activity, clinical features, and leptin levels. J Endocrinol Invest 30(5):356–362

    CAS  PubMed  Google Scholar 

  30. Takimoto Y, Yoshiuchi K, Ishizawa T, Yamamoto Y, Akabayashi A (2014) Autonomic dysfunction responses to head-up tilt in anorexia nervosa. Clin Auton Res 24(4):175–181

    PubMed  Google Scholar 

  31. Meredith IT, Eisenhofer G, Lambert GW, Jennings GL, Thompson J, Esler MD (1992) Plasma norepinephrine responses to head-up tilt are misleading in autonomic failure. Hypertension 19(6_pt_2):628–633

    CAS  PubMed  Google Scholar 

  32. Palomba D, Venturini M, Rausa M, Contin SA, Penolazzi B, Schumann R et al (2017) Reduced sympathetic activity and dysfunctional metacognition in patients with anorexia nervosa: a preliminary study. J Evid Based Psychother 17(1):1

    Google Scholar 

  33. Abell TL, Malagelada JR, Lucas AR, Brown ML, Camilleri M, Go VL et al (1987) Gastric electromechanical and neurohormonal function in anorexia nervosa. Gastroenterology 93(5):958–965

    CAS  PubMed  Google Scholar 

  34. Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F et al (1998) Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 97(20):2037–2042

    CAS  PubMed  Google Scholar 

  35. Mano T, Iwase S, Toma S (2006) Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans. Clin Neurophysiol 117(11):2357–2384

    PubMed  Google Scholar 

  36. Lambert EA, Schlaich MP, Dawood T, Sari C, Chopra R, Barton DA et al (2011) Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover. J Physiol 589(10):2597–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grassi G, Seravalle G, Quarti-Trevano F, Scopelliti F, Dell’Oro R, Bolla G et al (2007) Excessive sympathetic activation in heart failure with obesity and metabolic syndrome. Hypertension 49(3):535–541

    CAS  PubMed  Google Scholar 

  38. Paus T, Wong APY, Syme C, Pausova Z (2017) Sex differences in the adolescent brain and body: findings from the saguenay youth study. J Neurosci Res 95(1–2):362–370

    CAS  PubMed  Google Scholar 

  39. Flegal KM, Shepherd JA, Looker AC, Graubard BI, Borrud LG, Ogden CL et al (2009) Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr 89(2):500–508

    CAS  PubMed  Google Scholar 

  40. Nagata JM, Golden NH, Peebles R, Long J, Murray SB, Leonard MB et al (2017) Assessment of sex differences in body composition among adolescents with anorexia nervosa. J Adolesc Health 60(4):455–459

    PubMed  PubMed Central  Google Scholar 

  41. Hubel C, Gaspar HA, Coleman JRI, Finucane H, Purves KL, Hanscombe KB et al (2019) Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am J Med Genet B 180(6):428–438

    Google Scholar 

  42. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al (1998) The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–23

    PubMed  Google Scholar 

  43. Jebb SA, Cole TJ, Doman D, Murgatroyd PR, Prentice AM (2000) Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model. Br J Nutr 83(2):115–122

    CAS  PubMed  Google Scholar 

  44. Sundlöf G, Wallin B (1978) Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol 274(1):621–637

    PubMed  PubMed Central  Google Scholar 

  45. Thompson JM, Jennings GL, Chin JP, Esler MD (1994) Measurement of human sympathetic nervous responses to stressors by microneurography. J Auton Nerv Syst 49(3):277–281

    CAS  PubMed  Google Scholar 

  46. Van de Borne P, Montano N, Zimmerman B, Pagani M, Somers VK (1997) Relationship between repeated measures of hemodynamics, muscle sympathetic nerve activity, and their spectral oscillations. Circulation 96(12):4326–4332

    PubMed  Google Scholar 

  47. Benditt DG, Ferguson DW, Grubb BP, Kapoor WN, Kugler J, Lerman BB et al (1996) Tilt table testing for assessing syncope. J Am Coll Cardiol 28(1):263–275

    CAS  PubMed  Google Scholar 

  48. Casellini CM, Parson HK, Richardson MS, Nevoret ML, Vinik AI (2013) Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther 15(11):948–953

    PubMed  PubMed Central  Google Scholar 

  49. Yajnik C, Kantikar V, Pande A, Deslypere J-P, Dupin J, Calvet J-H et al (2013) Screening of cardiovascular autonomic neuropathy in patients with diabetes using non-invasive quick and simple assessment of sudomotor function. Diabetes Metab 39(2):126–131

    CAS  PubMed  Google Scholar 

  50. Macefield VG (2020) Recording and quantifying sympathetic outflow to muscle and skin in humans: methods, caveats and challenges. Clin Auton Res 31:59–75

    PubMed  PubMed Central  Google Scholar 

  51. Parati G, Di Rienzo M, Castiglioni P, Bouhaddi M, Cerutti C, Cividjian A et al (2004) Assessing the sensitivity of spontaneous baroreflex control of the heart: deeper insight into complex physiology. Hypertension 43(5):e32–e34

    CAS  PubMed  Google Scholar 

  52. Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol 280(3):R744–R751

    PubMed  Google Scholar 

  53. Mancia G, Di Rienzo M, Parati G (1993) Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension 21(4):510–524

    CAS  PubMed  Google Scholar 

  54. Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10(3):143

    PubMed  Google Scholar 

  55. Lambert GW, Jonsdottir IH (1998) Influence of voluntary exercise on hypothalamic norepinephrine. J Appl Physiol 85(3):962–966

    CAS  PubMed  Google Scholar 

  56. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252

    Google Scholar 

  57. Russell J, Baur LA, Beumont PJ, Byrnes S, Gross G, Touyz S et al (2001) Altered energy metabolism in anorexia nervosa. Psychoneuroendocrinology 26(1):51–63

    CAS  PubMed  Google Scholar 

  58. Polito A, Fabbri A, Ferro-Luzzi A, Cuzzolaro M, Censi L, Ciarapica D et al (2000) Basal metabolic rate in anorexia nervosa: relation to body composition and leptin concentrations. Am J Clin Nutr 71(6):1495–1502

    CAS  PubMed  Google Scholar 

  59. Kosmiski L, Schmiege SJ, Mascolo M, Gaudiani J, Mehler PS (2014) Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. J Clin Endocrinol Metab 99(3):908

    CAS  PubMed  Google Scholar 

  60. Hart S, Abraham S, Franklin RC, Twigg SM, Russell J (2011) Hypoglycaemia following a mixed meal in eating disorder patients. Postgrad Med J 87(1028):405

    PubMed  Google Scholar 

  61. Jenkins ZM, Phillipou A, Castle DJ, Eikelis N, Lambert EA (2021) Arterial stiffness in underweight and weight-restored anorexia nervosa. Psychophysiology 59:e13913

    Google Scholar 

  62. Cox HS, Kaye DM, Thompson JM, Turner AG, Jennings GL, Itsiopoulos C et al (1995) Regional sympathetic nervous activation after a large meal in humans. Clin Sci 89(2):145–154

    CAS  Google Scholar 

  63. Berne C, Fagius J, Niklasson F (1989) Sympathetic response to oral carbohydrate administration. Evidence from microelectrode nerve recordings. J Clin Investig 84(5):1403–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Scott EM, Greenwood JP, Vacca G, Stoker JB, Gilbey SG, Mary DA (2002) Carbohydrate ingestion, with transient endogenous insulinaemia, produces both sympathetic activation and vasodilatation in normal humans. Clin Sci 102(5):523–529

    CAS  Google Scholar 

  65. Heruc GA, Little TJ, Kohn MR, Madden S, Clarke SD, Horowitz M et al (2018) Effects of starvation and short-term refeeding on gastric emptying and postprandial blood glucose regulation in adolescent girls with anorexia nervosa. Am J Physiol Endocrinol Metab 315(4):E565–E573

    CAS  PubMed  Google Scholar 

  66. Hebebrand J, Muller T, Holtkamp K, Herpertz-Dahlmann B (2007) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12(1):23–35

    CAS  PubMed  Google Scholar 

  67. Grassi G (2004) Leptin, sympathetic nervous system, and baroreflex function. Curr Hypertens Rep 6(3):236–240

    PubMed  Google Scholar 

  68. McBryde FD, Guild S-J, Barrett CJ, Osborn JW, Malpas SC (2007) Angiotensin II-based hypertension and the sympathetic nervous system: the role of dose and increased dietary salt in rabbits. Exp Physiol 92(5):831–840

    CAS  PubMed  Google Scholar 

  69. Meredith IT, Broughton A, Jennings GL, Esler MD (1991) Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 325(9):618–624

    CAS  PubMed  Google Scholar 

  70. Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23(3):570–578

    CAS  PubMed  Google Scholar 

  71. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26(5):1257–1263

    CAS  PubMed  Google Scholar 

  72. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlöf G, Mark AL (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73(5):913–919

    PubMed  Google Scholar 

  73. Ferguson DW, Berg WJ, Sanders JS, Kempf JS (1990) Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: Evidence from direct micronenrographic recordings. J Am Coll Cardiol 16(5):1125–1134

    CAS  PubMed  Google Scholar 

  74. Scalco AZ, Rondon MU, Trombetta IC, Laterza MC, Azul JB, Pullenayegum EM et al (2009) Muscle sympathetic nervous activity in depressed patients before and after treatment with sertraline. J Hypertens 27(12):2429–2436

    CAS  PubMed  Google Scholar 

  75. Lambert E, Dawood T, Straznicky N, Sari C, Schlaich M, Esler M et al (2010) Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. J Hypertens 28(3):543–550

    CAS  PubMed  Google Scholar 

  76. Kennedy SH, Kaplan AS, Garfinkel PE, Rockert W, Toner B, Abbey SE (1994) Depression in anorexia nervosa and bulimia nervosa: discriminating depressive symptoms and episodes. J Psychosom Res 38(7):773–782

    CAS  PubMed  Google Scholar 

  77. Wade TD, Bulik CM, Neale M, Kendler KS (2000) Anorexia nervosa and major depression: shared genetic and environmental risk factors. Am J Psychiatry 157(3):469–471

    CAS  PubMed  Google Scholar 

  78. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 70(4):963–985

    CAS  PubMed  Google Scholar 

  79. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13(S4):99S-105S

    CAS  PubMed  Google Scholar 

  80. Tjalf Z, Timo S (2019) The investigation of the cardiovascular and sudomotor autonomic nervous system: a review. Front Neurol. https://doi.org/10.3389/fneur.2019.00053

    Article  Google Scholar 

  81. Chudecka M, Lubkowska A (2016) Thermal imaging of body surface temperature distribution in women with anorexia nervosa. Eur Eat Disord Rev 24(1):57–61

    PubMed  Google Scholar 

  82. Misra M, Aggarwal A, Miller KK, Almazan C, Worley M, Soyka LA et al (2004) Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls. Pediatrics 114(6):1574–1583

    PubMed  Google Scholar 

  83. Hundsberger T, Omlin A, Haegele-Link S, Vehoff J, Strasser F (2014) Autonomic dysfunction in cancer cachexia coincides with large fiber polyneuropathy. J Pain Symptom Manag 48(4):611–8.e1

    Google Scholar 

  84. Hayano J, Yuda E (2019) Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol 38(1):1–8

    Google Scholar 

Download references

Funding

This study was conducted with funding from St. Vincent’s Hospital Research Endowment Fund and the Barbara Dicker Brain Sciences Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe M. Jenkins.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this research.

Ethical approval

The research protocol was approved by the human research ethics committees at St Vincent’s Hospital, Melbourne (HREC/18/SVHM/126), Swinburne University of Technology (SHR Project 2018/183) and The Melbourne Clinic (Project 307).

Consent to participate

All participants provided written informed consent.

Consent for publication

The manuscript does not contain any individual personal data in any form. All authors reviewed and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

10286_2021_836_MOESM1_ESM.tif

Supplementary file1 Supplementary Figure 1. Correlation between MSNA bursts/min and BMI across sample (grouped according to psychotropic medication treatment status; r = 0.485; p = .005). BMI: body mass index; MSNA: muscle sympathetic nerve activity. (TIF 1242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, Z.M., Castle, D.J., Eikelis, N. et al. Autonomic nervous system function in women with anorexia nervosa. Clin Auton Res 32, 29–42 (2022). https://doi.org/10.1007/s10286-021-00836-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-021-00836-z

Keywords

Navigation