Abstract
The improvement in the knowledge of the pathways involved in cancerogenesis has led to the development of original targeted therapies that are being evaluated in recent clinical trials applied to hepatobiliary cancers. Primary hepatobiliary cancers, like other cancers, are considered somatic genetic diseases whose a mapping of the genetic defects will be available at the whole genome scale. Using genetic anomalies as markers is still an emerging approach but is promising to decipher the heterogeneity of the hepatobiliary cancers to classify them at themolecular scale, refine the prognosis and offer a personalized treatment.
Résumé
La description des voies de signalisation de la cancérogenèse est le fondement des nouvelles stratégies de thérapies ciblées qui sont en cours d’évaluation dans les cancers hépatobiliaires. Les cancers hépatobiliaires primitifs, comme les autres cancers, sont considérés comme des maladies génétiques somatiques dont la cartographie des anomalies génétiques à l’échelle du génome sera bientôt disponible. L’utilisation de marqueurs génétiques des tumeurs est une approche émergente pour tenter d’identifier, à l’échelle moléculaire, leur hétérogénéité pour classifier les tumeurs hépatobiliaires, évaluer le pronostic ou proposer un traitement personnalisé.
Similar content being viewed by others
Références
Abou-Alfa GK, Schwartz L, Ricci S, et al. (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol (Official Journal of the American Society of Clinical Oncology) 24: 4293–4300
Ahrendt SA, Rashid A, Chow JT, et al. (2000) P53 overexpression and KRAS gene mutations in primary sclerosing cholangitis-associated biliary tract cancer. J Hepatobiliary Pancreat Surg 7: 426–431
Audard V, Grimber G, Elie C, et al. (2007) Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol 212: 345–322
Boyault S, Rickman DS, de Reyniès A, et al. (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology (Baltimore, MD) 45: 42–52
Briggs CD, Neal CP, Mann CD, et al. (2009) Prognostic molecular markers in cholangiocarcinoma: a systematic review. Eur J Cancer (Oxford, England: 1990) 45: 33–47
Budhu A, Jia HL, Forgues M, et al. (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology (Baltimore, MD) 47: 897–907
Chiappini F, Gross-Goupil M, Saffroy R, et al. (2004) Microsatellite instability mutator phenotype in hepatocellular carcinoma in non-alcoholic and non-virally infected normal livers. Carcinogenesis 25: 541–547
Ding X, Yang LY, Huang GW, et al. (2005) Role of AFP mRNA expression in peripheral blood as a predictor for postsurgical recurrence of hepatocellular carcinoma: a systematic review and meta-analysis. World J Gastroenterol 11: 2656–2661
Fava G, Lorenzini I (2012) Molecular pathogenesis of cholangiocarcinoma. Int J Hepatol 2012: 630543
Gruenberger B, Schueller J, Heubrandtner U, et al. (2010) Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: a phase 2 study. Lancet Oncol 11: 1142–1148
Gwak GY, Yoon JH, Shin CM, et al. (2005) Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 131: 649–652
He B, Qiu X, Li P, et al. (2010) HCCNet: an integrated network database of hepatocellular carcinoma. Cell Research 20: 732–734
Hoshida Y, Villanueva A, Kobayashi M, et al. (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. New En J Med 359: 1995–2004
Hsu HC, Jeng YM, Mao TL, et al. (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157: 763–770
Hussain SP, Schwank J, Staib F, et al. (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26: 2166–2176
Isa T, Tomita S, Nakachi A, et al. (2002) Analysis of microsatellite instability, KRAS gene mutation and P53 protein overexpression in intrahepatic cholangiocarcinoma. Hepatogastroenterology 49: 604–608
Ji J, Shi J, Budhu A, et al. (2009) MicroRNA expression, survival, and response to interferon in liver cancer. New Eng J Medicine 361: 1437–447
Karapetis CS, Khambata-Ford S, Jonker DJ, et al. (2008) KRAS mutations and benefit from cetuximab in advanced colorectal cancer. New Eng J Med 359: 1757–1765
Katoh H, Shibata T, Kokubu A, et al. (2005) Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 43: 863–874
Koga Y, Kitajima Y, Miyoshi A, et al. (2005) Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol 12: 354–363
Leone F, Cavalloni G, Pignochino Y, et al. (2006) Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res (An Official Journal of the American Association for Cancer Research) 12: 1680–1685
Llovet JM, Ricci S, Mazzaferro V, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. New Eng J Med 359: 378–390
Lynch TJ, Bell DW, Sordella R, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Eng J Med 350: 2129–2139
Miki D, Ochi H, Hayes CN, et al. (2011) Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet 43: 797–800
Mitsudomi T, Hamajima N, Ogawa M, et al. (2000) Prognostic significance of P53 alterations in patients with non-small cell lung cancer: a meta-analysis. Clin Cancer Res (An Official Journal of the American Association for Cancer Research) 6: 4055–4063
Miura N, Maeda Y, Kanbe T, et al. (2005) Serum human telomerase reverse transcriptase messenger RNA as a novel tumor marker for hepatocellular carcinoma. Clin Cancer Res (An Official Journal of the American Association for Cancer Research) 11: 3205–3209
Monaco AP (2009) The role of mTor inhibitors in the management of posttransplant malignancy. Transplantation 87: 157–163
Nault JC, Zucman-Rossi J (2011) Genetics of hepatobiliary carcinogenesis. Semin Liver Dis 31: 173–187
Ohashi K, Nakajima Y, Kanehiro H, et al. (1995) Ki-ras mutations and P53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology 109: 1612–1617
Patel T (2002) Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2: 10
Totoki Y, Tatsuno K, Yamamoto S, et al. (2011) High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 43: 464–469
Villanueva A, Hoshida Y, Battiston C, et al. (2011) Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140: 1501–12.e2
Villanueva A, Newell P, Chiang DY, et al. (2007) Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27: 55–76
Wiedmann MW, Mössner J (2010) Molecular targeted therapy of biliary tract cancer-results of the first clinical studies. Curr Drug Targets 11: 834–850
Woo HG, Wang XW, Budhu A, et al. (2011) Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology 140: 1063–1070
Yu XJ, Fang F, Tang CL, et al. (2011) dbHCCvar: a comprehensive database of human genetic variations in hepatocellular carcinoma. Hum Mutat 32(12): E2316
Zucman-Rossi J, Benhamouche S, Godard C, et al. (2007) Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26: 774–780
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Guéguen, P., Le Maréchal, C. Profil moléculaire des tumeurs hépatobiliaires: vers de nouvelles pistes, facteurs prédictifs et cibles thérapeutiques. Oncologie 14, 186–190 (2012). https://doi.org/10.1007/s10269-012-2138-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10269-012-2138-9