Skip to main content

Advertisement

Log in

Correlation between PD-1/PD-L1 and RANKL/OPG in chronic apical periodontitis model of Sprague-Dawley rats

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Chronic apical periodontitis (CAP) is characterized by inflammation and destruction of the apical periodontium that is of pulpal origin, appearing as an apical radiolucent area, and does not produce clinical symptoms. Little is known about whether the PD-1/PD-L1 ratio is associated with the balance between RANKL and OPG in CAP. The relationship between PD-1/PD-L1 and RANKL/OPG in CAP is investigated in this study. A CAP rat model was established using Sprague-Dawley rats. The pulp chambers were exposed to the oral cavity to allow bacterial contamination. The apical tissues of the bilateral mandibular first molars were analyzed for histological morphology using hematoxylin and eosin (H&E) staining. Immunohistochemistry and qRT-PCR were used to determine the expression of PD-1, PD-L1, OPG, and RANKL mRNA and proteins in periapical tissues and mandibular samples, respectively. The radiological images indicated a poorly defined low-density shadow and alveolar bone resorption after periodontitis induction. Histological analysis revealed an infiltration of inflammatory cells and alveolar bone resorption in the periapical tissues. Mandibular mRNA and periapical protein expression of PD-1, PD-L1, and RANKL was upregulated 7–28 days after periodontitis induction, while the expression of OPG was downregulated. No significant relationship was observed between PD-1/PD-L1 and RANKL/OPG at either mRNA or protein levels in CAP. There is an increased expression of PD-1, PD-L1, and RANKL and a decreased expression of OPG, indicating progression of CAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Braz-Silva PH, Bergamini ML, Mardegan AP, De Rosa CS, Hasseus B, Jonasson P. Inflammatory profile of chronic apical periodontitis: a literature review. Acta Odontol Scand. 2019;77(3):173–80.

    Article  PubMed  Google Scholar 

  2. Fouad AF, Khan AA. Etiology and pathogenesis of pulpitis and apical periodontitis. Essential Endodontology: Prevention and Treatment of Apical Periodontitis. 2019:59–90.

  3. Sun X, Yang Z, Nie Y, Hou B. Microbial communities in the extraradicular and intraradicular infections associated with persistent apical periodontitis. Front Cell Infect Microbiol. 2022;11:1391.

    Article  Google Scholar 

  4. Silva T, Garlet GP, Fukada SY, Silva JSd, Cunha FdQ. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. Journal of dental research. 2007;86(4):306–19.

  5. Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and chemokines in periodontitis. European journal of dentistry. 2020;14(03):483–95.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, et al. Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int J Oral Sci. 2019;11(2):16. https://doi.org/10.1038/s41368-019-0049-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei L, Xu M, Xiong H. An update of knowledge on the regulatory role of Treg cells in apical periodontitis. Oral Dis. 2021;27(6):1356–65.

    Article  PubMed  Google Scholar 

  8. Karteva T, Manchorova-Veleva N. The role of the immune response in chronic marginal and apical periodontitis. Folia Med. 2020;62(2):238–43.

    Article  CAS  Google Scholar 

  9. Bergamini ML, Mardegan AP, De Rosa CS, Palmieri M, Sarmento DJdS, Hiraki KRN et al. Presence of Langerhans cells, regulatory T cells (Treg) and mast cells in asymptomatic apical periodontitis. Brazilian oral research. 2020;34.

  10. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  11. Goodman A, Patel SP, Kurzrock R. PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14(4):203–20. https://doi.org/10.1038/nrclinonc.2016.168.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao J, Roberts A, Wang Z, Savage J, Ji R-R. Emerging role of PD-1 in the central nervous system and brain diseases. Neurosci Bull. 2021;37:1188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kajiya M, Giro G, Taubman MA, Han X, Mayer MP, Kawai T. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease. J Oral Microbiol. 2010;2(1):5532.

    Article  Google Scholar 

  15. Kohli SS, Kohli VS. Role of RANKL–RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian journal of endocrinology and metabolism. 2011;15(3):175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menezes R, Bramante CM, da Silva Paiva KB, Letra A, Carneiro E, Fernando Zambuzzi W, et al. Receptor activator NFκB-ligand and osteoprotegerin protein expression in human periapical cysts and granulomas. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006;102(3):404–9. https://doi.org/10.1016/j.tripleo.2005.10.054.

    Article  PubMed  Google Scholar 

  17. Fan R, Sun B, Zhang C-f, XUAN W, WANG Q-q, YIN X-z. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin expression in chronic apical periodontitis: possible association with inflammatory cells. Chinese Medical Journal. 2011;124(14):2162–6.

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–8.

  19. Delgado RJR, Pinheiro CR, Gasparoto TH, Sipert CR, De Moraes IG, Garcia RB, et al. Programmed death 1 (PD-1) and PD-1 ligand (PD-L1) expression in chronic apical periodontitis. European endodontic journal. 2019;4(1):3.

    PubMed  PubMed Central  Google Scholar 

  20. Barreiros D, Pucinelli CM, Oliveira KMH, Paula-Silva FWG, Nelson Filho P, Silva L, et al. Immunohistochemical and mRNA expression of RANK, RANKL, OPG, TLR2 and MyD88 during apical periodontitis progression in mice. J Appl Oral Sci. 2018;26: e20170512. https://doi.org/10.1590/1678-7757-2017-0512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiorillo L, Cervino G, Laino L, D’Amico C, Mauceri R, Tozum TF, et al. Porphyromonas gingivalis, periodontal and systemic implications: a systematic review. Dentistry journal. 2019;7(4):114.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ogawa Y, Kobayashi R, Kono T, Toda M, Okada H, Kurita-Ochiai T, et al. Involvement of Fusobacterium Nucleatum in Bone Resorption and Periodontal Tissue Inflammation. International Journal of Oral-Medical Sciences. 2020;18(3–4):296–302.

    Article  Google Scholar 

  23. Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products. Jpn Dent Sci Rev. 2020;56(1):90–6. https://doi.org/10.1016/j.jdsr.2020.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kajiya M, Giro G, Taubman MA, Han X, Mayer MP, Kawai T. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease. J Oral Microbiol. 2010;2. doi:https://doi.org/10.3402/jom.v2i0.5532.

  25. Huang J-W. PD-1 and PD-1L expression in peripheral blood T lymphocytes of patients with chronic periodontitis and their correlation with the degree of inflammation. Journal of Hainan Medical University. 2017;23(2):135–8.

    Google Scholar 

  26. Weyand CM, Berry GJ, Goronzy JJ. The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. J Leukoc Biol. 2018;103(3):565–75.

    Article  CAS  PubMed  Google Scholar 

  27. Schönrich G, Raftery MJ. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front Cell Infect Microbiol. 2019;9:207.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007;56:739–45.

    Article  PubMed  Google Scholar 

  29. Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed Pharmacother. 2023;159: 114215.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan W, Wang X, Zhang J, Zhou W, Feng Y, Chen J, et al. Programmed death ligand 1 negatively regulates inflammatory response of chronic periodontitis. Hua Xi Kou Qiang Yi Xue Za Zhi. 2015;33(4):366–9. https://doi.org/10.7518/hxkq.2015.04.009.

    Article  PubMed  Google Scholar 

  31. Sun X, Li B, Abula D, Wang L, Wang B, Wang Q et al. 01% Nano-silver mediates PD-1/PD-L1 pathway and alleviates chronic apical periodontitis in rats. Odontology. 2023;111(1):154–64. https://doi.org/10.1007/s10266-022-00735-3.

  32. Silva MJ, Kajiya M, AlShwaimi E, Sasaki H, Hong J, Ok P, et al. Bacteria-reactive immune response may induce RANKL-expressing T cells in the mouse periapical bone loss lesion. J Endodont. 2012;38(3):346–50.

    Article  Google Scholar 

  33. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19–26.

    Article  CAS  PubMed  Google Scholar 

  34. Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, et al. Theoretical investigation of the role of the RANK–RANKL–OPG system in bone remodeling. J Theor Biol. 2010;262(2):306–16.

    Article  CAS  PubMed  Google Scholar 

  35. Greisen SR, Kragstrup TW, Thomsen JS, Hørslev-Pedersen K, Hetland ML, Stengaard-Pedersen K, et al. The programmed death-1 pathway counter-regulates inflammation-induced osteoclast activity in clinical and experimental settings. Front Immunol. 2022;13:773946. https://doi.org/10.3389/fimmu.2022.773946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The work was supported by the National Natural Science Foundation of China (No. 81560178).

Author information

Authors and Affiliations

Authors

Contributions

Yishan Liu contributed to the study conception and design. Material preparation and data collection and analysis were performed by Qi Wang, Liping Wang, Li Sheng, Bei Zhang, Burlen Jieensi, and Shutao Zheng. The first draft of the manuscript was written by Qi Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yishan Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Animal experiments were approved by the Animal Experimental Ethics Committee of Xinjiang Medical University (Approval No. IACUC-20190225–01).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, L., Sheng, L. et al. Correlation between PD-1/PD-L1 and RANKL/OPG in chronic apical periodontitis model of Sprague-Dawley rats. Odontology (2024). https://doi.org/10.1007/s10266-024-00911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00911-7

Keywords

Navigation