Skip to main content

Advertisement

Log in

In vitro temperature changes in the pulp chamber caused by laser and Quadwave LED-light curing units

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The study evaluated the pulp temperature (PT) increase in Class I and V preparations when exposed to the Monet Laser (for 1 and 3 s), the PinkWave (for 3 and 10 s), the Valo Grand (for 3 and 10 s), the PowerCure, (for 3 and 10 s) and the SmartLite Pro (for 10 s). Non-retentive Class I and Class V cavities were prepared in one molar fixed in an acrylic plate and positioned in a warm water bath. The PT baseline was kept at 32 °C to simulate physiological conditions. Two T-type thermocouples were inserted through the roots into the pulp chamber in two positions: close to the pulp horn and the buccal wall close to the Class V cavity. The water flow was adjusted to 0.026 mL/min, and real-time temperature data were collected every 0.5 s. PT measurements were made with the tip of the LCU 0 and 6 mm away from the tooth surface. The radiant exitance (mW/cm2) and radiant exposure (J/cm2) were calculated. One-way ANOVA compared the effect of the pulpal flow, and ΔT values were subjected to two-way ANOVA, followed by Scheffe’s post hoc tests. The Monet Laser used for 3 s and the PinkWave used for 10 s produced the greatest PT rise in the Class I cavity. The simulated pulpal flow did not influence the PT rise. Overall, cavities exposed at the 0 mm distance had higher ΔT values than groups at 6 mm distance. The placement of a rubber dam for Class V restorations may prevent positioning LCUs directly over the cavity, which may affect the rise in PT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, CAG Arrais, upon reasonable request.

References

  1. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;29(6):605–17. https://doi.org/10.1016/j.dental.2013.02.003.

    Article  PubMed  Google Scholar 

  2. Milly H, Banerjee A. Evaluating the clinical use of light-emitting diode vs halogen photocuring units. Oral Health Prev Dent. 2018;16(1):21–5. https://doi.org/10.3290/j.ohpd.a39822.

    Article  PubMed  Google Scholar 

  3. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(suppl 1): e61. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061.

    Article  PubMed  Google Scholar 

  4. Apex V. Pinkwave. https://vistaapex.com/wp-content/uploads/2021/03/91037-I-AP-ENG5.pdf. Accessed 22 Feb 2022

  5. Knezevic A, Ristic M, Demoli N, Tarle Z, Music S, Negovetic MV. Composite photopolymerization with diode laser. Oper Dent. 2007;32(3):279–84. https://doi.org/10.2341/06-79.

    Article  PubMed  Google Scholar 

  6. Drost T, Reimann S, Frentzen M, Meister J. Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci. 2019;34(4):729–36. https://doi.org/10.1007/s10103-018-2651-1.

    Article  PubMed  Google Scholar 

  7. Kouros P, Dionysopoulos D, Deligianni A, Strakas D, Sfeikos T, Tolidis K. Evaluation of photopolymerization efficacy and temperature rise of a composite resin using a blue diode laser (445 nm). Eur J Oral Sci. 2020;128(6):535–41. https://doi.org/10.1111/eos.12742.

    Article  PubMed  Google Scholar 

  8. AMD. Monet Laser Curing Light. The 1 second revolution. 2021. https://www.amdlasers.com/pages/monet-laser-curing-light-intro. Accessed 12 Oct 2021.

  9. Rocha MG, Maucoski C, Roulet JF, Price RB. Depth of cure of 10 resin-based composites light-activated using a laser diode, multi-peak, and single-peak light-emitting diode curing lights. J Dent. 2022. https://doi.org/10.1016/j.jdent.2022.104141.

    Article  PubMed  Google Scholar 

  10. Almeida R, Manarte-Monteiro P, Domingues J, Falcao C, Herrero-Climent M, Rios-Carrasco B, et al. High-power LED units currently available for dental resin-based materials—a review. Polymers (Basel). 2021. https://doi.org/10.3390/polym13132165.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mouhat M, Mercer J, Stangvaltaite L, Ortengren U. Light-Curing Units used in dentistry: factors associated with heat development-potential risk for patients. Clin Oral Investig. 2017;21(5):1687–96. https://doi.org/10.1007/s00784-016-1962-5.

    Article  PubMed  Google Scholar 

  12. Armellin E, Bovesecchi G, Coppa P, Pasquantonio G, Cerroni L. LED curing lights and temperature changes in different tooth sites. Biomed Res Int. 2016;2016:1894672. https://doi.org/10.1155/2016/1894672.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Price RB, Ferracane JL, Shortall AC. Light-Curing Units: a review of what we need to know. J Dent Res. 2015;94(9):1179–86. https://doi.org/10.1177/0022034515594786.

    Article  PubMed  Google Scholar 

  14. Par M, Repusic I, Skenderovic H, Milat O, Spajic J, Tarle Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin Oral Investig. 2019;23(10):3777–88. https://doi.org/10.1007/s00784-019-02807-1.

    Article  PubMed  Google Scholar 

  15. Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8(1):137–51. https://doi.org/10.1080/26415275.2021.1979981.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Balestrino A, Verissimo C, Tantbirojn D, Garcia-Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29(4):234–2240.

    PubMed  Google Scholar 

  17. Akarsu S, Aktug KS. Influence of bulk-fill composites, polimerization modes, and remaining dentin thickness on intrapulpal temperature rise. Biomed Res Int. 2019;2019:4250284. https://doi.org/10.1155/2019/4250284.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mouhat M, Stangvaltaite-Mouhat L, Mercer J, Nilsen BW, Ortengren U. Light-curing units used in dentistry: effect of their characteristics on temperature development in teeth. Dent Mater J. 2021. https://doi.org/10.4012/dmj.2020-305.

    Article  PubMed  Google Scholar 

  19. Savas S, Botsali MS, Kucukyilmaz E, Sari T. Evaluation of temperature changes in the pulp chamber during polymerization of light-cured pulp-capping materials by using a VALO LED Light Curing Unit at different curing distances. Dent Mater J. 2014;33(6):764–9. https://doi.org/10.4012/dmj.2013-274.

    Article  PubMed  Google Scholar 

  20. Braga S, Oliveira L, Ribeiro M, Vilela A, da Silva GR, Price RB, et al. Effect of simulated pulpal microcirculation on temperature when light curing bulk fill composites. Oper Dent. 2019;44(3):289–301. https://doi.org/10.2341/17-351-L.

    Article  PubMed  Google Scholar 

  21. Price RB, Ferracane JL, Hickel R, Sullivan B. The Light-Curing Unit: an essential piece of dental equipment. Int Dent J. 2020;70(6):407–17. https://doi.org/10.1111/idj.12582.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Price RB, Derand T, Sedarous M, Andreou P, Loney RW. Effect of distance on the power density from two light guides. J Esthet Dent. 2000;12(6):320–7. https://doi.org/10.1111/j.1708-8240.2000.tb00241.x.

    Article  PubMed  Google Scholar 

  23. Oberholzer TG, Makofane ME, du Preez IC, George R. Modern high powered led curing lights and their effect on pulp chamber temperature of bulk and incrementally cured composite resin. Eur J Prosthodont Restor Dent. 2012;20(2):50–5.

    PubMed  Google Scholar 

  24. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19(4):515–30. https://doi.org/10.1016/0030-4220(65)90015-0.

    Article  PubMed  Google Scholar 

  25. Maucoski C, Zarpellon DC, Dos Santos FA, Lipinski LC, Campagnoli EB, Rueggeberg FA, et al. Analysis of temperature increase in swine gingiva after exposure to a polywave((R)) LED Light Curing Unit. Dent Mater. 2017;33(11):1266–73. https://doi.org/10.1016/j.dental.2017.07.021.

    Article  PubMed  Google Scholar 

  26. Spranley TJ, Winkler M, Dagate J, Oncale D, Strother E. Curing light burns. Gen Dent. 2012;60(4):e210–4.

    PubMed  Google Scholar 

  27. Vinall CV, Garcia-Silva TC, Lou JSB, Wells MH, Tantbirojn D, Versluis A. Intrapulpal temperature rise during light activation of restorative composites in a primary molar. Pediatr Dent. 2017;39(3):125–30.

    PubMed  Google Scholar 

  28. Lee C-H, Lee I-B. Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration. J Dent Sci. 2021. https://doi.org/10.1016/j.jds.2021.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lempel E, Ori Z, Kincses D, Lovasz BV, Kunsagi-Mate S, Szalma J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites. Dent Mater. 2021;37(6):983–97. https://doi.org/10.1016/j.dental.2021.02.013.

    Article  PubMed  Google Scholar 

  30. Gross DJ, Davila-Sanchez A, Runnacles P, Zarpellon DC, Kiratcz F, Campagnoli EB, et al. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave(R) LED Light Curing Units. Dent Mater. 2020;36(9):1201–13. https://doi.org/10.1016/j.dental.2020.05.015.

    Article  PubMed  Google Scholar 

  31. Zarpellon DC, Runnacles P, Maucoski C, Gross DJ, Coelho U, Rueggeberg FA, et al. In vivo pulp temperature changes during class V cavity preparation and resin composite restoration in premolars. Oper Dent. 2021. https://doi.org/10.2341/20-098-C.

    Article  PubMed  Google Scholar 

  32. Zarpellon DC, Runnacles P, Maucoski C, Coelho U, Rueggeberg FA, Arrais C. Controlling in vivo, human pulp temperature rise caused by LED curing light exposure. Oper Dent. 2019;44(3):235–41. https://doi.org/10.2341/17-364-C.

    Article  PubMed  Google Scholar 

  33. Runnacles P, Arrais CAG, Maucoski C, Coelho U, De Goes MF, Rueggeberg FA. Comparison of in vivo and in vitro models to evaluate pulp temperature rise during exposure to a polywave(R) LED Light Curing Unit. J Appl Oral Sci. 2019;27: e20180480. https://doi.org/10.1590/1678-7757-2018-0480.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Berggreen E, Bletsa A, Heyeraas KJ. Circulation in normal and inflamed dental pulp. Endod Top. 2007;17(1):2–11. https://doi.org/10.1111/j.1601-1546.2010.00249.x.

    Article  Google Scholar 

  35. Sukapattee M, Wanachantararak S, Sirimaharaj V, Vongsavan N, Matthews B. Effect of full crown preparation on pulpal blood flow in man. Arch Oral Biol. 2016;70:111–6. https://doi.org/10.1016/j.archoralbio.2016.06.005.

    Article  PubMed  Google Scholar 

  36. Odor TM, Pitt Ford TR, McDonald F. Adrenaline in local anaesthesia: the effect of concentration on dental pulpal circulation and anaesthesia. Endod Dent Traumatol. 1994;10(4):167–73. https://doi.org/10.1111/j.1600-9657.1994.tb00681.x.

    Article  PubMed  Google Scholar 

  37. Vongsavan K, Samdrup T, Kijsamanmith K, Rirattanapong P, Vongsavan N. The effect of intraosseous local anesthesia of 4% articaine with 1:100,000 epinephrine on pulpal blood flow and pulpal anesthesia of mandibular molars and canines. Clin Oral Investig. 2019;23(2):673–80. https://doi.org/10.1007/s00784-018-2481-3.

    Article  PubMed  Google Scholar 

  38. Zheng QH, Hong QC, Zhang L, Ye L, Huang DM. A clinical study on the effect of injection sites on efficacy of anesthesia and pulpal blood flow in carious teeth. Oper Dent. 2018;43(1):22–30. https://doi.org/10.2341/16-371-C.

    Article  PubMed  Google Scholar 

  39. Rueggeberg F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999;25:S4-15 (quiz S73).

    Google Scholar 

  40. Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer in human tooth—experimental characterization and mathematical modeling. Dent Mater. 2010;26(6):501–13. https://doi.org/10.1016/j.dental.2010.02.009.

    Article  PubMed  Google Scholar 

  41. Pires JA, Cvitko E, Denehy GE, Swift EJ Jr. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int. 1993;24(7):517–21.

    PubMed  Google Scholar 

  42. Runnacles P, Arrais CA, Pochapski MT, Dos Santos FA, Coelho U, Gomes JC, et al. In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED Light Curing Unit. Dent Mater. 2015;31(5):505–13. https://doi.org/10.1016/j.dental.2015.02.001.

    Article  PubMed  Google Scholar 

  43. Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;4:255–66. https://doi.org/10.1515/plm-2012-0034.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Molnár E, Lohinai Z, Demeter A, Mikecs B, Tóth Z, Vág J. Assessment of heat provocation tests on the human gingiva: the effect of periodontal disease and smoking. Acta Physiol Hung. 2015;102(2):176–88. https://doi.org/10.1556/036.102.2015.2.8.

    Article  PubMed  Google Scholar 

  45. Kodonas K, Gogos C, Tziafas D. Effect of simulated pulpal microcirculation on intrapulpal temperature changes following application of heat on tooth surfaces. Int Endod J. 2009;42(3):247–52. https://doi.org/10.1111/j.1365-2591.2008.01508.x.

    Article  PubMed  Google Scholar 

  46. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent. 2009;37(6):485–90. https://doi.org/10.1016/j.jdent.2009.03.006.

    Article  PubMed  Google Scholar 

  47. Park SH, Roulet JF, Heintze SD. Parameters influencing increase in pulp chamber temperature with light-curing devices: curing lights and pulpal flow rates. Oper Dent. 2010;35(3):353–61. https://doi.org/10.2341/09-234-L.

    Article  PubMed  Google Scholar 

  48. Yazici AR, Müftü A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro. Oper Dent. 2006;31:261–5. https://doi.org/10.2341/05-26.

    Article  PubMed  Google Scholar 

  49. Aguiar FH, Barros GK, Lima DA, Ambrosano GM, Lovadino JR. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study. Biomed Mater. 2006;1(3):140–3. https://doi.org/10.1088/1748-6041/1/3/008.

    Article  PubMed  Google Scholar 

  50. Murray PE, Smith AJ, Windsor LJ, Mjör IA. Remaining dentine thickness and human pulp responses. Int Endod J. 2003;36:33–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Mitacs travel grant (IT29166), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES)—Finance Code 001grant, and an internal research fund grant from the Faculty of Dentistry, Dalhousie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Augusto Galvão Arrais.

Ethics declarations

Ethics approval

Approval was obtained from the Health Sciences Research Ethics Board of Dalhousie University, Halifax, NS, Canada (#2021-5703).

Conflict of interests

The authors declare that there is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maucoski, C., Price, R.B., Arrais, C.A.G. et al. In vitro temperature changes in the pulp chamber caused by laser and Quadwave LED-light curing units. Odontology 111, 668–679 (2023). https://doi.org/10.1007/s10266-022-00780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00780-y

Keywords

Navigation