Skip to main content

Advertisement

Log in

Plaque accumulation on titanium disks with different surface treatments: an in vivo investigation

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Implants with rough surfaces are today widely used. It has been speculated that rough surfaces (Ra > 0.2 μm) provide a better “substrate” for retention and accumulation of plaque in terms of area, thickness and colony-forming unit that can eventually lead to peri mucositis and/or peri-implantitis. The aim of this investigation was to evaluate in vivo the plaque accumulation after 48 h on three implant surfaces with different treatments. For this investigation, we used 21 sterilized titanium disks, with a diameter of 8mm and a thickness of 3 mm, provided by the manufacturer: 7 with machined surface, as smooth control, 7 with HA grit sandblasted RBM surface and 7 with Ca++ incorporated in titanium Xpeed surface. One disk for each surface treatment was characterized at time 0 by SEM and AFM to study, respectively, the surface morphology and roughness. The other 18 disks were mounted randomly on three upper acrylic bites in a buccal lateral position, worn for 48 h by three volunteer students for plaque accumulation. After 48 h each disk was removed and analyzed qualitatively and quantitatively by an independent operator, not involved into the study, in order to avoid bias. Data collected were statistically analyzed by one-way ANOVA. The qualitative analysis showed no differences in terms of total plaque accumulation between the surfaces. Data from quantitative analysis using Anova Test showed no significance between all groups. In this in vivo investigation all the surfaces studied promoted plaque formation. The degree of surface roughness seems not to be a critical factor for plaque accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albrektsson T, Donos N, Working Group 1. Implant survival and complications. The Third EAO consensus conference 2012. Clin Oral Implants Res. 2012;23:63–5.

    Article  PubMed  Google Scholar 

  2. Lindhe J, Meyle J, Group D of European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35(8 Suppl):282–5.

    Article  PubMed  Google Scholar 

  3. Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res. 2017;1:31–37.

    Article  Google Scholar 

  4. Sarmiento H, Norton M, Fiorellini J. A classification system for peri-implant diseases and conditions. Int J Periodontics Restorative Dent. 2016;9:699–705.

    Article  Google Scholar 

  5. Newman MG, Takei H, Klokkevold PR, Carranza FA. Carranza’s clinical periodontology. 12th ed. Canada: Elsevier; 2015.

    Google Scholar 

  6. Marsh PD, Martin MV. Oral microbiology. 5th ed. London, Amsterdam: Churchill Livingstone, Elsevier; 2009.

    Google Scholar 

  7. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in sub gingival plaque. J Clin Periodontol. 1998;25(2):134–44.

    Article  PubMed  Google Scholar 

  8. Glossary of periodontal terms, 4th Ed. American Academy of Periodontology. 2001; p 41.

  9. Subramani K, Jung RE, Molenberg A, Hämmerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009;24:616–26.

    PubMed  Google Scholar 

  10. Albouy J-P, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012;39:182–7.

    Article  PubMed  Google Scholar 

  11. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng. 2014;228:1083–99.

    Article  Google Scholar 

  12. Albrektsson T, Wennerberg A. Oral implant surfaces: part 1, review focusing on topographic and chemical properties of different surfaces and in vivo response to them. Int J Prosthodont. 2004;17:536–54313.

    PubMed  Google Scholar 

  13. Rasmusson L, Kahnberg K-E, Tan A. Effects of implant design and surface on bone regeneration and implant stability: an experimental study in the dog mandible. Clin Implant Dent Relat Res. 2001;1:2–8.

    Article  Google Scholar 

  14. Feller L, Jadwat Y, Khammissa RAG, Meyerov R, Schechter I, Lemmer J. Cellular responses evoked by different surface characteristics of intraosseous titanium implants. BioMed Res Int. 2015;. doi:10.1155/2015/171945.

    PubMed  PubMed Central  Google Scholar 

  15. Esposito M, Coulthard P, Thomsen P, Worthington H. Interventions for replacing missing teeth different types of dental implants. In: The Cochrane Collaboration, editor. Cochrane Database of Systematic Reviews [Internet]. Chichester:Wiley. 2005.

  16. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172–84.

    Article  PubMed  Google Scholar 

  17. Botticelli D, Lang NP. Dynamics of osseointegration in various human and animal models—a comparative analysis. Clin Oral Implants Res. 2016;. doi:10.1111/clr.12872.

    Google Scholar 

  18. Conserva E, Lanuti A, Menini M. Cell behaviour related to implant surfaces with different microstructure and chemical composition: an in vitro analysis. Int J Oral Maxillofac Implants. 2010;25:1099–107.

    PubMed  Google Scholar 

  19. Conserva E, Menini M, Ravera G, Pera P. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study. Clin Oral Implants Res. 2013;24:880–9.

    Article  PubMed  Google Scholar 

  20. Barbour ME, O’Sullivan DJ, Jenkinson HF, Jagger DC. The effects of polishing methods on surface morphology, roughness and bacterial colonisation of titanium abutments. J Mater Sci Mater Med. 2007;18:1439–47.

    Article  PubMed  Google Scholar 

  21. Quirynen M, Abarca M, Van Assche N, Nevins M, van Steenberghe D. Impact of supportive periodontal therapy and implant surface roughness on implant outcome in patients with a history of periodontitis. J Clin Periodontol. 2007;34:805–15.

    Article  PubMed  Google Scholar 

  22. Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94:1027–34.

    Article  PubMed  Google Scholar 

  23. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.

    Article  PubMed  Google Scholar 

  24. Ferreira Ribeiro C, Cogo-Muller K, Franco GC, Silva-Concilio LR, Camopos MS, de Mello Rode S, Neves AC. Initial oral biofilm formation on titanium implants with different surfaces treatments: an in vivo study. Arch Oral Biol. 2016;69:33–9.

    Article  PubMed  Google Scholar 

  25. Fröjd V, Chávez de Paz L, Andersson M, Wennerberg A, Davies JR, Svensäter G. In situ analysis of multispecies biofilm formation on customized titanium surfaces: biofilms on titanium surfaces. Mol Oral Microbiol. 2011;26:241–52.

    Article  PubMed  Google Scholar 

  26. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res. 1991;1:38–46.

    Article  Google Scholar 

  27. Burgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res. 2010;21:156–64.

    Article  PubMed  Google Scholar 

  28. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfer H, Waltimo T, Kniha H, Gahlert M. In vitro biofilm formation on Titanium and Zirconia implant surfaces. J Periodontol. 2017;88:298–307.

    Article  PubMed  Google Scholar 

  29. Wennerberg A, Sennerby L, Kultje C, Lekholm U. Some soft tissue characteristics at implant abutments with different surface topography. J Clin Periodontol. 2003;30:88–94.

    Article  PubMed  Google Scholar 

  30. Renvert S, Polyzois I. Risk indicators for peri-implant mucositis: a systematic literature review. J Clin Periodontol. 2015;42:172–86.

    Article  Google Scholar 

  31. Renvert S, Lindahl C, Rutger-Persson G. The incidence of peri-implantitis for two different implant systems over a period of thirteen years. J Clin Periodontol. 2012;39:1191–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance and the CIGS (Interdepartments Center for Big Instruments) of the University of Modena and Reggio Emilia for the use of their facilities and electronic instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Conserva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conserva, E., Generali, L., Bandieri, A. et al. Plaque accumulation on titanium disks with different surface treatments: an in vivo investigation. Odontology 106, 145–153 (2018). https://doi.org/10.1007/s10266-017-0317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-017-0317-2

Keywords

Navigation