Skip to main content
Log in

How do ‘housekeeping’ genes control organogenesis?—unexpected new findings on the role of housekeeping genes in cell and organ differentiation

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In recent years, an increasing number of mutations in what would appear to be ‘housekeeping genes’ have been identified as having unexpectedly specific defects in multicellular organogenesis. This is also the case for organogenesis in seed plants. Although it is not surprising that loss-of-function mutations in ‘housekeeping’ genes result in lethality or growth retardation, it is surprising when (1) the mutant phenotype results from the loss of function of a ‘housekeeping’ gene and (2) the mutant phenotype is specific. In this review, by defining housekeeping genes as those encoding proteins that work in basic metabolic and cellular functions, we discuss unexpected links between housekeeping genes and specific developmental processes. In a surprising number of cases housekeeping genes coding for enzymes or proteins with functions in basic cellular processes such as transcription, post-transcriptional modification, and translation affect plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaiana COR15a gene affects both chloroplast and protoplast freezing torelance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Barrero JM, González-Bayón R, del Pozo JC, Ponce MR, Micol JL (2007) INCURVATA2 encodes the catalytic subunit of DNA polymerase α and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19:2822–2838

    Article  PubMed  CAS  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  Google Scholar 

  • Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Bioch Biophys Acta 1809:567–576

    Article  CAS  Google Scholar 

  • Byrne ME (2009) A role for the ribosome in development. Trends Plant Sci 14:512–519

    Article  PubMed  CAS  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20:2586–2602

    Article  PubMed  CAS  Google Scholar 

  • Carroll AJ, Heazlewood JL, Ito J, Millar AH (2008) Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 7:347–369

    PubMed  CAS  Google Scholar 

  • Casson SA, Topping JF, Lindsey K (2009) MERISTEM-DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis. Plant J 57:857–869

    Article  PubMed  CAS  Google Scholar 

  • Chu BY, Wilson TJ, McCune-Zierath C, Snustad DP, Carter JV (1998) Two β-tubulin genes, TUB1 and TUB8, of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37:785–790

    Article  PubMed  CAS  Google Scholar 

  • Coury DA, Zhang C, Ko A, Skaggs MI, Christensen CA, Drews GN, Feldmann KA, Yadegiri R (2007) Segregation distortion in Arabidopsis gametophytic factor 1 (gfa1) mutants is caused by a deficiency of an essential RNA splicing factor. Sex Plant Reprod 20:87–97

    Article  CAS  Google Scholar 

  • Creff A, Sormani R, Desnos T (2010) The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Mol Biol 73:533–546

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant Physiol 147:128–142

    Article  PubMed  CAS  Google Scholar 

  • Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG (2006) Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiol 140:1507–1521

    Article  PubMed  CAS  Google Scholar 

  • Duroux M, Houben A, Ruzicka K, Friml J, Grasser KD (2004) The chromatin remodeling complex FACT associates with actively transcribed regions of the Arabidopsis genome. Plant J 40:660–671

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Jacob Y, Veley KM, Ding L, Yu X, Choe G, Michaels SD (2011) Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiol 155:1425–1434

    Article  PubMed  CAS  Google Scholar 

  • Ferjani A, Yano S, Horiguchi G, Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144:988–999

    Article  PubMed  CAS  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Muto Y, Maeshima M, Tsukaya H (2011) Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates post-germinative development in Arabidopsis. Plant Cell 23:2895–2908

    Article  PubMed  CAS  Google Scholar 

  • Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi TM, Maere S, Beemster G, Anami S, Neyt P, Robles P, Micol JL, Inzé D, Van Lijsebettens M (2007) The Arabidopsis homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell 19:417–432

    Article  PubMed  CAS  Google Scholar 

  • Fujikura U, Horiguchi G, Ponce MR, Micol JL, Tsukaya H (2009) Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J 59:499–508

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Collier SA, Byrne ME, Martienssen RA (2006) Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16:933–938

    Article  PubMed  CAS  Google Scholar 

  • Groß-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jürgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    Article  PubMed  Google Scholar 

  • Henderson IR, Liu F, Drea S, Simpson GG, Dean C (2005) An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132:3597–3607

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Molnar A, Jones A, Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci USA 103:14994–15001

    Article  PubMed  CAS  Google Scholar 

  • Himanen K, Woloszynska M, Boccardi TM, De Groeve S, Nelissen H, Bruno L, Vuylsteke M, Van Lijsebettens M (2012) Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes. Plant J. doi:10.1111/j.1365313X.2012.05071.x

  • Horiguchi G, Tsukaya H (2011) Organ size regulation in plants: insight from compensation. Front Plant Sci 2:24

    Article  PubMed  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G, Mollá-Morales A, Pérez-Pérez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H (2011a) Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Plant J 65:724–736

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G, Nakayama H, Ishikawa N, Mubo M, Demura T, Fukuda H, Tsukaya H (2011b) ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 52:112–124

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H (2012) Ribosomes and translation in plant developmental control. Plant Sci 191–192:24–34

    Article  PubMed  Google Scholar 

  • Huang W, Pi L, Liang W, Xu B, Wang H, Cai R, Huang H (2006) The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 18:2479–2492

    Article  PubMed  CAS  Google Scholar 

  • Hunt AG (2008) Messenger RNA 3′ end formation in plants. Curr Top Microbiol Immunol 326:151–177

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Komura M, Kawano E, Kuwashiro Y, Takahashi T (2008) A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thaliana. Plant J 56:881–890

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C (2007) Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J 51:173–184

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Iwasaki M, Takahashi H, Imai T, Matsumura Y, Fleury D, Van Lijsebettens M, Machida Y, Machida C (2011) ASYMMETRIC LEAVES2 and elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol 52:1259–1273

    Article  PubMed  CAS  Google Scholar 

  • Lee B, KapoorA ZhuJ, Zhu J-K (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  PubMed  CAS  Google Scholar 

  • Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet 38:896–903

    Article  PubMed  CAS  Google Scholar 

  • Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H (2005) The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 17:2157–2171

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Quesada V, Crevillen P, Bäurle I, Swiezewski S, Dean C (2007a) The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28:398–407

    Article  PubMed  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ (2007b) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodelling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed  Google Scholar 

  • Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327:94–97

    Article  PubMed  CAS  Google Scholar 

  • Lolas IB, Himanen K, Grønlund JT, Lyngaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD (2010) The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J 61:686–697

    Article  PubMed  CAS  Google Scholar 

  • Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774

    Article  PubMed  CAS  Google Scholar 

  • Mittal V, Ma B, Hernandez N (1999) SNAPc: a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. Gene Dev 13:1807–1821

    Article  PubMed  CAS  Google Scholar 

  • Moll C, von Lyncker L, Zimmermann S, Kägi C, Baumann N, Twell D, Grossniklaus U, Groß-Hardt R (2008) CLO/GFA1 and ATP are novel regulators of gametic cell fate in plants. Plant J 56:913–921

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144:513–523

    Article  PubMed  CAS  Google Scholar 

  • Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inzé D, Van Lijsebettens M (2005) The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci USA 102:7754–7759

    Article  PubMed  CAS  Google Scholar 

  • Nelissen H, Boccardi TM, Himanen K, Van Lijsebettens M (2007) Impact of core histone modifications on transcriptional regulation and plant growth. Crit Rev Plant Sci 26:243–263

    Article  CAS  Google Scholar 

  • Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, Van Der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M (2010) Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 107:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Wada T, Yamamoto KT, Okada K (2005) The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17:2940–2953

    Article  PubMed  CAS  Google Scholar 

  • Ohtani M, Sugiyama M (2005) Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant J 43:479–490

    Article  PubMed  CAS  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2008) Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. Plant Mol Biol 66:303–314

    Article  PubMed  CAS  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2010) Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis. Plant Cell Physiol 51:2001–2012

    Google Scholar 

  • Petricka JJ, Nelson TM (2007) Arabidopsis nucleolin affects plant development and patterning. Plant Physiol 144:173–186

    Article  PubMed  CAS  Google Scholar 

  • Petricka JJ, Clay NK, Nelson TM (2008) Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J 56:251–263

    Article  PubMed  CAS  Google Scholar 

  • Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME (2008) Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 135:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  PubMed  CAS  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22:3142–3152

    Article  PubMed  CAS  Google Scholar 

  • Rosado A, Sohn EJ, Drakakaki G, Pan S, Swidergal A, Xiong Y, Kang BH, Bressan RA, Raikhel NV (2010) Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. Plant Cell 22:143–158

    Article  PubMed  CAS  Google Scholar 

  • Rosar C, Kanonenberg K, Nanda AM, Mielewczik M, Bräutigam A, Novák O, Strnad M, Walter A, Weber APM (2012) The leaf reticulate mutant dov1 is impaired in the first step of purine metabolism. Mol Plant (in press). doi:10.1093/mp/sss045

  • Sadowski CL, Henry RW, Lobo SM, Hernandez N (1993) Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Gene Dev 7:1535–1548

    Article  PubMed  CAS  Google Scholar 

  • Sanmartin M, Sauer M, Munoz A, Zouhar J, Ordónez A, van de Ven WTG, Caro E, de la Paz M, Raikhel NV, Gutiérrez C, Sánchez-Serrano JJ, Rojo E (2011) A molecular switch for initiating cell differentiation in Arabidopsis. Curr Biol 21:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787

    Article  PubMed  CAS  Google Scholar 

  • Sussex IM (1951) Experiments on the cause of dorsiventrality in leaves. Nature 167:651–652

    Article  PubMed  CAS  Google Scholar 

  • Swaraz AM, Park Y-D, Hur Y (2011) Knock-out mutations of Arabidopsis SmD3-b induce pleotropic phenotypes through altered transcript splicing. Plant Sci 180:661–671

    Article  PubMed  CAS  Google Scholar 

  • Szakonyi D, Byrne ME (2011a) Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana. Plant J 65:269–281

    Article  PubMed  CAS  Google Scholar 

  • Szakonyi D, Byrne ME (2011b) Involvement of ribosomal protein RPL27a in meristem activity and organ development. Plant Signal Behav 6:712–714

    Article  PubMed  CAS  Google Scholar 

  • Szakonyi D, Moschopoulos A, Byrne ME (2010) Perspectives on leaf dorsoventral polarity. J Plant Res 123:281–290

    Article  PubMed  Google Scholar 

  • Toyokura K, Watanabe K, Oikawa A, Kusano M, Tameshige T, Tatematsu K, Matsumoto N, Tsugeki R, Saito K, Okada K (2011) Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial–abaxial axis. Plant Cell Physiol 52:1340–1353

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Ishikawa T, Watanabe K, Terakura S, Iwakawa H, Okada K, Machida C, Machida Y (2007) Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. Plant Cell 19:445–457

    Article  PubMed  CAS  Google Scholar 

  • Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388

    PubMed  Google Scholar 

  • Vankan P, Filipowicz W (1988) Structure of U2 snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts. EMBO J 7:791–799

    PubMed  CAS  Google Scholar 

  • Vankan P, Filipowicz W (1989) A U-snRNA gene-specific upstream element and a –30 ‘TATA’ box are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 8:3875–3882

    PubMed  CAS  Google Scholar 

  • Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  PubMed  CAS  Google Scholar 

  • Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:R102

    Article  PubMed  Google Scholar 

  • Wang C, Tian Q, Hou Z, Mucha M, Aukerman M, Olsen O-A (2007) The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. Plant Cell Rep 26:1357–1366

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62:761–773

    Article  PubMed  CAS  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289–4299

    PubMed  CAS  Google Scholar 

  • Xing D, Zhao H, Li QQ (2008a) Arabidopsis CLP1-SIMILAR PROTEIN3, an ortholog of human polyadenylation factor CLP1, functions in gametophyte, embryo, and postembryonic development. Plant Physiol 148:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Xing D, Zhao H, Xu R, Li QQ (2008b) Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J 54:899–910

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu J-K (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirements for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Ye X, Quinn Li Q (2004) AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo development. Gene 324:35–45

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ (2006) The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 61:799–815

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57:279–288

    Article  PubMed  CAS  Google Scholar 

  • Yagi N, Takeda S, Matsumoto N, Okada K (2009) VAJ/GFA1/CLO is involved in the directional control of floral organ growth. Plant Cell Physiol 50:515–527

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Ling Q, Wang H, Huang H (2008) Ribosomal proteins promote leaf adaxial identity. Development 135:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Yasutani I, Ozawa S, Nishida T, Sugiyama M, Komamine A (1994) Isolation of temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation of shoots. Plant Physiol 105:815–822

    PubMed  CAS  Google Scholar 

  • Yuan Z, Luo D, Li G, Yao X, Wang H, Zeng M, Huang H, Cui X (2010) Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. Plant J 64:331–342

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS ONE 3:e2410

    Article  PubMed  Google Scholar 

  • Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang Y, Xu Y, Xue Y, Chong K, Bao S (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411

    Article  PubMed  Google Scholar 

  • Zhou F, Roy B, von Arnim AG (2010) Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3 h and the ribosomal protein RPL24. BMC Plant Biol 27:193

    Article  Google Scholar 

  • Zhu Y, Li Z, Xu B, Li H, Wang L, Dong A, Huang H (2008) Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development. J Integr Plant Biol 50:897–905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out by the following supports: Grants-in-Aid for Creative Scientific Research (No. 18GS0313 to H. T.), Scientific Research on Priority Areas (No. 19060002 to H. T.; No. 19060001 to M. S.), Scientific Research (A) (No. 17207005 to H. T. and G. H.); The University of Sydney (to M. E. B.); the Deutsche Forschungsgemeinschaft (Le1412-3/1); and Institute for the Promotion of Innovation through Science and Technology in Flanders for doctoral and postdoctoral fellowships and FP7-Marie Curie programme for IEF fellowship MC-273068 to co-workers of M. V. L. The authors thank to the Organizing Committee of IBC 2011, to give them an opportunity to have the symposium that resulted in this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tsukaya.

Additional information

This article was contributed at the invitation of the Editorial Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukaya, H., Byrne, M.E., Horiguchi, G. et al. How do ‘housekeeping’ genes control organogenesis?—unexpected new findings on the role of housekeeping genes in cell and organ differentiation. J Plant Res 126, 3–15 (2013). https://doi.org/10.1007/s10265-012-0518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0518-2

Keywords

Navigation