Skip to main content
Log in

Fine-scale genetic structure within plots of Polygala reinii (Polygalaceae) having an ant-dispersal seed

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Fine-scale genetic structure within a population was analyzed for the myrmecochorous forest perennial Polygala reinii (Polygalaceae) using allozyme loci. In the analysis, two sampling plots were established to cover the isolated patchy distribution within the study population. Size and spatial structure were also examined for the plots to assess their interaction with the genetic structuring. Allozyme analysis based on 13 putative loci encoding 10 enzyme systems showed high genetic variation and low values of fixation indices at the two plots. Spatial autocorrelation analysis based on the multilocus coancestry coefficient (f ij ) revealed significant genetic structuring in both plots, suggesting limited gene-, especially seed-, dispersal within the population. The spatial structure within the plots, assessed by O-ring statistics, was characterized by the occurrence of spatial clustering of individuals within a few meters. In particular, the range of the spatial clustering roughly corresponded to that of the genetic structuring. While the size structure did not significantly differ between the plots, these results indicate that the fine-scale genetic structure reflects the formation of spatial clustering of related individuals within the population, partly due to the restricted ant-mediated seed dispersal in P. reinii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ally D, Ritland K (2007) A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth mountain hemlock (Tsuga mertensiana). J Hered 98:73–78

    Article  CAS  PubMed  Google Scholar 

  • Chung MY (2008) Variation in demographic and fine-scale genetic structure with population-history stage of Hemerocallis taeanensis (Liliaceae) across the landscape. Ecol Res 23:83–90

    Article  Google Scholar 

  • Chung MY, Nason JD (2007) Spatial demographic and genetic consequence of harvesting within populations of the terrestrial orchid Cymbidium goeringii. Biol Conserv 137:125–137

    Article  Google Scholar 

  • Chung MY, Nason JD, Chung MG (2005) Spatial genetic structure in populations of the terrestrial orchid Orchis cyclochila (Orchidaceae). Plant Syst Evol 254:209–219

    Article  Google Scholar 

  • Chung MY, Nason JD, Chung MG (2007) Effect of population succession on demographic and genetic processes: predictions and tests in the daylily Hemerocallis thunbergii (Liliaceae). Mol Ecol 16:2816–2829

    Article  PubMed  Google Scholar 

  • Cruse-Sanders JM, Hamrick JL (2004) Spatial and genetic structure within populations of wild American ginseng (Panax quinquefolius L., Araliaceae). J Hered 95:309–321

    Article  CAS  PubMed  Google Scholar 

  • Degen B, Caron H, Bandou E, Maggia L, Chevallier MH, Leveau A, Kremer A (2001) Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87:497–507

    Article  CAS  PubMed  Google Scholar 

  • Erickson DL, Hamrick JL (2003) Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence. Heredity 90:25–32

    Article  CAS  PubMed  Google Scholar 

  • Gómes C, Espadaler X (1998) Myrmecochorous dispersal distance: a world survey. J Biogeogr 25:573–580

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown ADH, Clegg NT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodess OE, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp 203–236

    Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107:281–297

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hardy OJ, González-Martínes SC, Fréville H, Boquin G, Mignot A, Colas B, Olivieri I (2004) Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). I. Pattern of pollen dispersal. J Evol Biol 17:795–806

    Article  CAS  PubMed  Google Scholar 

  • Ishihama F, Ueno S, Tsumura Y, Washitani I (2006) Effects of density and floral morph on pollen flow and seed reproduction of an endangered heterostylous herb, Primula sieboldii. J Ecol 94:846–855

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Vandepitte K, Honna O, Roldán-Ruiz I (2006) Fine-scale genetic structure of life history stages in the food-deceptive orchid Orchis purpurea. Mol Ecol 15:2801–2808

    Article  PubMed  Google Scholar 

  • Kalisz S, Hanzawa FM, Tornor SJ, Thiede DA, Voigt S (1999) Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80:2620–2634

    Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FM, Tonor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the role of dispersal, mating history, and selection. Evolution 55:1560–1568

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Kurosaki N, Miyake S (1998) Flora of Rokko Mountains in Hyogo Prefecture. Kobe Parks and Greenery Association, Kobe (in Japanese)

    Google Scholar 

  • Levin DA, Kerter HW (1974) Gene flow in seed plants. Evol Biol 7:130–220

    Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Miyamoto N, Karamoto N, Takahashi M (2003) Ecological and genetic effects of cutting in an Alnus trabeculosa Hand.-Mazz. (Betulaceae) population. Heredity 91:331–336

    Article  CAS  PubMed  Google Scholar 

  • Nagaike T (2000) A review of ecological studies on plant species diversity in plantation ecosystem. J Jpn For Soc 82:407–416

    Google Scholar 

  • Nakagawa M (2004) Genetic diversity of fragmented populations of Polygala reinii (Polygalaceae), a perennial herb endemic to Japan. J Plant Res 117:355–361

    Article  PubMed  Google Scholar 

  • Parker KC, Hamrick JL, Parker AJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87:99–113

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Beattie AJ (1995) Does and dispersal of seeds in Sclerolacena diacantha (Chenopodiaceae) generate local spatial genetic structure? Heredity 75:351–361

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme electrophoresis. Academic, San Diego

  • Ripley BD (1977) Modeling spatial patterns. J R Stat Soc Ser B 39:965–981

    Google Scholar 

  • Schnabel A, Hamrick JL (1995) Understanding the population genetic structure of Gleditsia tradcanthos L. The scale and pattern of pollen gene flow. Evolution 49:921–931

    Article  Google Scholar 

  • Shimatani K (2001) Point process approach to statistical analysis and modeling for tree distribution maps. Jpn J Ecol 51:87–106 (in Japanese)

    Google Scholar 

  • Shiraishi S (1988) Inheritance of isozyme variation in Japanese black pine, Pinus thumbergii Parl. Silvae Genet 37:93–100

    Google Scholar 

  • Stoyan D, Pentinen A (2000) Recent application of point process methods in forestry statistics. Stat Sci 15:61–78

    Article  Google Scholar 

  • Troupin D, Nathan R, Vendramin GG (2006) Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Mol Ecol 15:3617–3630

    Article  CAS  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Wiegand T, Moloney KA (2004) Rings, circles, and null modes for point pattern analysis in ecology. Oikos 104:209–229

    Article  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Portland, pp 5–45

  • Westerkump C, Weber A (1999) Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Bot J Linn Soc 129:208–221

    Google Scholar 

  • Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Ann Rev Ecol Evol Syst 35:583–621

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yamagishi H, Tomimatsu H, Ohara M (2007) Fine-scale spatial genetic structure within continuous and fragmented populations of Trillium camschatcense. J Hered 98:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Chen J, Chen F (2007) Ant-mediated seed dispersal contributes to the local spatial pattern and genetic structure of Globba lancangensis (Zingiberaceae). J Hered 98:317–324

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. T. Ohkawa, Dr. H. Azuma, Dr. J Noguchi, Dr. A. Naiki, and Mr. F. Nakamura for their assistance with field sampling, and Dr. T. Wiegand for providing the program Programita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, M. Fine-scale genetic structure within plots of Polygala reinii (Polygalaceae) having an ant-dispersal seed. J Plant Res 123, 355–362 (2010). https://doi.org/10.1007/s10265-009-0276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0276-y

Keywords

Navigation