Skip to main content
Log in

Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

We explored the fine-scale distribution of cytotypes of the mountain plant Senecio carniolicus along an altitudinal transect in the Eastern Alps. Cytotypes showed a statistically significant altitudinal segregation with diploids exclusively found in the upper part of the transect, whereas diploids and hexaploids co-occurred in the lower range. Analysis of accompanying plant assemblages revealed significant differences between cytotypes along the entire transect but not within the lower part only, where both cytotypes co-occur. This suggests the presence of ecological differentiation between cytotypes with the diploid possessing the broader ecological niche. No tetraploids were detected, indicating the presence of strong crossing barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783–1788

    Google Scholar 

  • Baack EJ (2005) Ecological factors influencing tetraploid establishment in snow buttercups (Ranunculus adoneus, Ranunculaceae): minority cytotype exclusion and barriers to triploid formation. Am J Bot 92:1827–1835

    Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Burton TL, Husband BC (2000) Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182–1191

    PubMed  CAS  Google Scholar 

  • Ellenberg H (1996) Die Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Felber F (1991) Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol 4:195–207

    Article  Google Scholar 

  • Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540

    Article  Google Scholar 

  • Fischer MA, Adler W, Oswald K (2005) Exkursionsflora für Österreich, Liechtenstein und Südtirol. 2nd edn. Land Oberösterreich, Biologiezentrum der OÖ Landesmuseen, Linz

    Google Scholar 

  • Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Naturalist 124:703–711

    Article  Google Scholar 

  • Gauthier P, Lumaret R, Bédécarrats A (1998) Genetic variation and gene flow in alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/ L.corniculatus L.). 1. Insights from morphological and allozyme markers. Heredity 80:683–693

    Article  CAS  Google Scholar 

  • Hardy OJ, Vanderhoeven S, De Loose M, Meerts P (2000) Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol 146:281–290

    Article  CAS  Google Scholar 

  • Husband BC, Schemske DW (1998) Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694

    Article  Google Scholar 

  • Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701

    Article  Google Scholar 

  • Husband BC, Schemske DW, Burton TL, Goodwillie C (2002) Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proc R Soc London 269:2565–2571

    Article  Google Scholar 

  • Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710

    Article  Google Scholar 

  • Lumaret R, Guillerm JL, Delay J, Loutfi AAL, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446

    Article  Google Scholar 

  • Mable BK (2003) Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582–590

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB (2007) vegan: Community Ecology Package. R package version 1.8-5. http://www.cran.r-project.org

  • Petit C, Thompson JD (1997) Variation in phenotypic response to light availability between diploid and tetraploid populations of the perennial grass Arrhenatherum elatius from open and woodland sites. J Ecol 85:657–667

    Article  Google Scholar 

  • Petit C, Lesbros P, Ge X, Thompson JD (1997) Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatius (Poaceae). Heredity 79:31–40

    Article  Google Scholar 

  • R Developement Core Team (2006) R: A language and environment for statistical computing. R-Cran version 2.4.1. http://www.cran.r-project.org

  • Roberts DW (2006) labdsv: Laboratory for Dynamic Synthetic Vegephenomenology. R package version 1.2-2. http://www.ecology.msu.montana.edu/labdsv/R

  • Rodríguez DJ (1996) A model for the establishment of polyploidy in plants. Am Naturalist 147:33–46

    Article  Google Scholar 

  • Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166:5–8

    Article  PubMed  Google Scholar 

  • Suda J, Trávníček P (2006) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun W, Nolan J, Orfao A, Rabinovitch P (eds) Current protocols in cytometry. Unit 7.30. Wiley, New York, pp 7.30.1–7.30.14

    Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss G, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus Willd. (Asteraceae). Am J Bot 94:1391–1401

    Google Scholar 

  • Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307

    Article  Google Scholar 

  • Van Dijk P, Bijlsma R (1994) Simulations of flowering time displacement between cytotypes that form inviable hybrids. Heredity 72:522–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Hülber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables S 1, 2 (DOC 545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönswetter, P., Lachmayer, M., Lettner, C. et al. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J Plant Res 120, 721–725 (2007). https://doi.org/10.1007/s10265-007-0108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0108-x

Keywords

Navigation