Skip to main content
Log in

A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions for temporal discretization and the Lagrangian polynomials are used for spatial discretization. An efficient spectral approximation of the weak solution is established. The main work is the demonstration of the well-posedness for the weak problem and the derivation of a posteriori error estimates for the spectral Galerkin approximation. Extensive numerical experiments are presented to perform the validity of a posteriori error estimators, which support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bernardi, C., Maday, Y. Spectral methods. In: Handbook of Numerical Analysis, Vol. V, North-Holland, 1997, 209–485

  2. Caputo, M. Mean fractional-order-derivatives differential equations and filters. Ann. Univ. Ferrara., 41: 73–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, L., Nochetto, R.H., Otrola, E., Salgado, A.J. A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys., 293: 339–358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Shen, J., Wang, L. Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp., 85: 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Phys., 12: 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erin, V.J., Roop, J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ Equ., 22: 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Glöckle, W.G., Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J., 68: 46–53 (1995)

    Article  Google Scholar 

  8. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P. Time fractional diffusion: A discrete random walk approach. Nonlinear Dynam., 29: 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, J., Cen, Z., Xu, A., Liu, L. A posteriori error estimation for a singularly perturbed Volterra integro-differential equation. Numer. Algorithms, 83: 549–563 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Y., Ma, J. High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math., 235: 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, B., Lazarov, R., Liu, Y., Zhou, Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys., 281: 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karniadakis, G.E., Hesthaven, J.S., Podlubny, I. Special issue on “Fractional PDEs: theory, numerics, and applications”. J. Comput. Phys., 293: 1–3 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, The Netherlands, 2006

    MATH  Google Scholar 

  14. Klimek, M., Agrawal, O.P. Fractional Sturm-Liouville problem. Comput. Math. Appl., 66: 795–812 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Li, X., Xu, C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal., 47: 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, X., Chen, Y., Huang, Y. A posteriori error estimates of hp spectral element methods for optimal control problems with L2-norm state constraint. Numer. Algorithms, 83: 1145–1169 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Shen, S., Anh, V., Turner, I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam J., 46: 488–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Y., Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys., 225: 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lorenzo, C.F., Hartley, T.T. Variable order and distributed order fractional operations. Nonlinear Dyn., 29: 57–98 (2002)

    Article  MATH  Google Scholar 

  20. Maday, Y. Analysis of spectral projections in one dimensional domains. Math. Comp., 55: 537C–562 (1990).

    Article  MathSciNet  Google Scholar 

  21. Mainardi, F. Fractional diffusive waves in viscoelastic solids. Nonlinear Waves in Solids, 93–97 (1995)

  22. Mao, Z., Karniadakis, G.E. A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal., 56: 24–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mao, Z., Chen, Z., Shen, J. Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math., 106: 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Metzler, R., Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep., 339: 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, K.S., Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York, 1993

    MATH  Google Scholar 

  26. Nigmatullin, R.R. Realization of the generalized transfer equation in a medium with fractal geometry. Phys. B, 133: 425–430 (1986)

    Google Scholar 

  27. Owolabi, K.M., Atangana, A. Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos Solitons Fractals, 111: 119–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I. Fractional Differential Equations. Academic Press, New York, 1999

    MATH  Google Scholar 

  29. Quarteroni, A., Valli, A. Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, 1997

    MATH  Google Scholar 

  30. Rashidinia, J., Mohmedi, E. Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations. Comput. Appl. Math., 39: 216 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Samko, S.G., Kilbas, A.A., Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Sciences Publishers, New York, 1993

    MATH  Google Scholar 

  32. Shen, J., Sheng, C. Spectral methods for fractional differential equations using generalized Jacobi functions. Handbook of Fractional Calculus with Applications, 3: 127–155 (2019)

    MathSciNet  Google Scholar 

  33. Shen, J., Tang, T., Wang, L. Spectral Methods: Algorithms, Analysis and Applications. Springer Publishing Company, Incorporated, 2011

    Book  MATH  Google Scholar 

  34. Smit, W., Vries, H.D. Rheological models containing fractional derivatives. Rheol. Acta, 9: 525–534 (1970)

    Article  Google Scholar 

  35. Stynes, M., O’Riordan, E., Gracia, J. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal., 55: 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Su, G., Lu, L., Tang, B., Liu, Z. Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems. Appl. Math. Comput., 378: 9 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Sweilam, N.H., El-Sayed, A.A.E., Boulaaras, S. Fractional-order advection-dispersion problem solution via the spectral collocation method and the non-standard finite difference technique. Chaos Solitons Fractals, 144: 65–70 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Szegö, G. Orthogonal polynomials, 4th edition. American Mathematical Society, Providence, R.I., 1975

    MATH  Google Scholar 

  39. Tang, B., Zhao, J., Liu, Z. Monotone iterative method for two-point fractional boundary value problems. Adv. Difference Equ., 182: 9 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Ye, X., Xu, C. A posteriori error estimates for the fractional optimal control problems. J. Inequal. Appl., 141: 13 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Yue, X., Liu, M., Shu, S., Bu, W., Xu, Y. Space-time finite element adaptive AMG for multi-term time fractional advection diffusion equations. Math. Methods Appl. Sci., 44: 2769–2789 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zaky, M.A. Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comp. Appl. Math., 37: 3525–3538 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zayernouri, M., Karniadakis, G.E. Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys., 252: 495–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zeng, F., Li, C., Liu, F., Turner, I. Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput., 37: 55–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeng, F., Zhang, Z., Karniadakis, G.E. Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys., 307: 15–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, Y., Zhang, Y., Liu, F., Turner, I., Tang, Y., Anh, V. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput. Math. Appl., 73: 1087–1099 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, M., Liu, F., Anh, V., Turner, I. A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model., 40: 4970–4985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zheng, R., Liu, F., Jiang, X. A Legendre spectral method on graded meshes for the two-dimensional multi-term time-fractional diffusion equation with non-smooth solutions. Appl. Math. Lett., 104: 8 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ping Chen.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This work is supported by the State Key Program of National Natural Science Foundation of China (Nos. 11931003) and National Natural Science Foundation of China (Nos. 41974133).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Chen, Yp., Xie, B. et al. A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative. Acta Math. Appl. Sin. Engl. Ser. 39, 943–961 (2023). https://doi.org/10.1007/s10255-023-1091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-023-1091-2

Keywords

2020 MR Subject Classification

Navigation