Skip to main content
Log in

A numerical algorithm for determination of a control parameter in two-dimensional parabolic inverse problems

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown control parameter and unknown solution of two-dimensional parabolic inverse problem with overspecialization at a point in the spatial domain. In this approach, a compact fourth-order scheme is used to discretize spatial derivatives of equation and reduces the problem to a system of ordinary differential equations (ODEs). Then we apply a fourth order boundary value method to the solution of resulting system of ODEs. So the proposed method has fourth order of accuracy in both space and time components and is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are presented and some comparisons are made with several well-known finite difference schemes in the literature. Also we will investigate the effect of noise in data on the approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugnano, L., Trigiante. D. Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and Beach Science Publishers, Amsterdam, 1998

    Google Scholar 

  2. Brugnano. L., Trigiante, D. Stability properties of some BVM methods. Appl. Numer. Math., 13: 291–304 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brugnano, L., Trigiante, D. Boundary value methods: the third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl., 36: 269–284 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cannon, J.R, Lin, Y. Determination of parameter p(t) in Holder classes for some semilinear parabolic equations. Inverse Probl. 4, 595–606 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cannon, J.R., Lin, Y. An inverse problem of finding a parameter in a semilinear heat equation. J. Math. Anal. Appl., 145(2): 470–484 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannon, J.R., Yin, H.M. On a class of non-classical parabolic problems. J. Differ. Equ., 79(2): 266–288 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannon, J.R., Yin, H.M. Numerical solutions of some parabolic inverse problems. Numer. Methods Partial Differ. Equ., 2: 177–191 (1990)

    Article  MathSciNet  Google Scholar 

  8. Cannon, J.R., Lin, Y., Wang, S. Determination of source parameter in parabolic equations. Meccanica 27: 85–94 (1992)

    Article  MATH  Google Scholar 

  9. Cannon, J.R., Lin, Y.L., Xu, S. Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations. Inverse Probl., 10: 227–243 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deckert, K.L., Maple, C.G. Solution for diffusion with integral type boundary conditions. Proc. Iowa Acad. Sci., 70: 354–361 (1963)

    MathSciNet  Google Scholar 

  11. Dehghan, M. Finding a control parameter in one-dimensional parabolic equations. Appl. Math. Comput., 135: 491–503 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dehghan, M., Tatari, M. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions. Math. Compu. Model., 44: 1160–1168 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dehghan, M., Saadatmandi, A. A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification. Comput. Math. Appl., 52: 933–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dehghan, M., Shakeri, F. Method of lines solutions of the parabolic inverse problem with an overspecification at a point. Numer. Algor., 50: 417–437 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dehghan, M. Parameter determination in a partial differential equation from the overspecified data. Math. Compu. Model., 41: 197–213 (2005)

    Article  Google Scholar 

  16. Dehghan, M. Identifying a control function in two-dimensional parabolic inverse problems. Appl. Math. Comput., 143: 375–391 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dehghan, M. Fourth-order techniques for identifying a control parameter in the parabolic equations. Int. J. Eng. Sci., 40: 433–447 (2002)

    Article  MATH  Google Scholar 

  18. Ionkin, N.I. Solution of a boundary value problem in heat conduction with a nonclassical boundary condition. Diff. Eqs., 13: 204–211 (1977)

    MATH  Google Scholar 

  19. Lin, Y. Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations. SIAM. J. Math. Anal., 25: 1577–1594 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Macbain, J.A., Bendar, J.B. Existence and uniqueness properties for one-dimensional magnetotelluric inversion problem. J. Math. Phys., 27: 645–649 (1986)

    Article  MathSciNet  Google Scholar 

  21. Macbain, J.A. Inversion theory for a parametrized diffusion problem. SIAM J. Appl. Math., 18: 1386–1391 (1987)

    Article  MathSciNet  Google Scholar 

  22. Mohebbi, A., Dehghan, M. High-order scheme for determination of a control parameter in an inverse problem from the over-specified data. Comput. Phys. Commun., 181: 1947–1954 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mohebbi, A., Dehghan, M. The use of compact boundary value method for the solution of two-dimensional Schrodinger equation. J. Comput. Appl. Math., 225: 124–134 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Prilepko, A.I., Soloev, V.V. Solvability of the inverse boundary value problem of finding a coefficient of a lower order term in a parabolic equation. Diff. Eqs., 23: 136–143 (1987)

    Google Scholar 

  25. Rundell, W. Determination of an unknown non-homogenous term in a linear partial differential equation from overspecified boundary data. Appl. Anal., 10: 231–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Spotz, W.F. High-order compact finite difference schemes for computational mechanics. PhD thesis, University of Texas at Austin, Austin, TX, 1995

    Google Scholar 

  27. Wang, S., Lin, Y. A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations. Inverse Probl., 5: 631–640 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Mohebbi.

Additional information

Supported by the Foundation of University of Kashn (Grant No. 258499/5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, A. A numerical algorithm for determination of a control parameter in two-dimensional parabolic inverse problems. Acta Math. Appl. Sin. Engl. Ser. 31, 213–224 (2015). https://doi.org/10.1007/s10255-015-0461-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-015-0461-9

Keywords

2000 MR Subject Classification

Navigation