Skip to main content
Log in

On the functions counting walks with small steps in the quarter plane

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Models of spatially homogeneous walks in the quarter plane \(\mathbf{ Z}_{+}^{2}\) with steps taken from a subset \(\mathcal{S}\) of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)↦Q(x,y;z) of the numbers q(i,j;n) of such walks starting at the origin and ending at \((i,j) \in\mathbf{ Z}_{+}^{2}\) after n steps is studied. For all non-singular models of walks, the functions xQ(x,0;z) and yQ(0,y;z) are continued as multi-valued functions on C having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C 2, the interval \(]0,1/|\mathcal{S}|[\) of variation of z splits into two dense subsets such that the functions xQ(x,0;z) and yQ(0,y;z) are shown to be holonomic for any z from the one of them and non-holonomic for any z from the other. This entails the non-holonomy of (x,y,z)↦Q(x,y;z), and therefore proves a conjecture of Bousquet-Mélou and Mishna in Contemp. Math. 520:1–40 (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bostan and M. Kauers, The complete generating function for Gessel walks is algebraic, Proc. Am. Math. Soc., 432 (2010), 3063–3078.

    Article  MathSciNet  Google Scholar 

  2. M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, Contemp. Math., 520 (2010), 1–40.

    Article  Google Scholar 

  3. M. Bousquet-Mélou and M. Petkovsek, Walks confined in a quadrant are not always D-finite, Theor. Comput. Sci., 307 (2003), 257–276.

    Article  MATH  Google Scholar 

  4. G. Fayolle and R. Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, Z. Wahrscheinlichkeitstheor. Verw. Geb., 47 (1979), 325–351.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Fayolle and K. Raschel, On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane, Markov Process. Relat. Fields, 16 (2010), 485–496.

    MathSciNet  MATH  Google Scholar 

  6. G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random Walks in the Quarter-Plane, Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  7. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  8. J. Gerretsen and G. Sansone, Lectures on the Theory of Functions of a Complex Variable II: Geometric Theory, Wolters-Noordhoff Publishing, Groningen, 1969.

    MATH  Google Scholar 

  9. I. Gessel, A probabilistic method for lattice path enumeration, J. Stat. Plan. Inference, 14 (1986), 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Jones and D. Singerman, Complex Functions, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  11. M. Kauers, C. Koutschan, and D. Zeilberger, Proof of Ira Gessel’s lattice path conjecture, Proc. Natl. Acad. Sci. USA, 106 (2009), 11502–11505.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Kurkova and K. Raschel, Explicit expression for the generating function counting Gessel’s walks, Adv. Appl. Math., 47 (2011), 414–433.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Malyshev, Random Walks, Wiener-Hopf Equations in the Quarter Plane, Galois Automorphisms, Lomonossov Moscow University Press, Moscow, 1970 (in Russian).

    Google Scholar 

  14. V. Malyshev, Positive random walks and Galois theory, Usp. Mat. Nauk, 26 (1971), 227–228.

    MATH  Google Scholar 

  15. V. Malyshev, An analytical method in the theory of two-dimensional positive random walks, Sib. Math. J., 13 (1972), 1314–1329.

    Google Scholar 

  16. S. Melczer and M. Mishna, Singularity analysis via the iterated kernel method (2011, in preparation).

  17. M. Mishna and A. Rechnitzer, Two non-holonomic lattice walks in the quarter plane, Theor. Comput. Sci., 410 (2009), 3616–3630.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Raschel, Counting walks in a quadrant: a unified approach via boundary value problems, J. Eur. Math. Soc., 14 (2012), 749–777.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  20. G. Watson and E. Whittaker, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1962.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Raschel.

About this article

Cite this article

Kurkova, I., Raschel, K. On the functions counting walks with small steps in the quarter plane. Publ.math.IHES 116, 69–114 (2012). https://doi.org/10.1007/s10240-012-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-012-0045-7

Keywords

Navigation