Skip to main content
Log in

Geometric Structures on the Complement of a Projective Arrangement

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group).

In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig–Wiesbaden 1987.

  2. D. Bessis, Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487–507, also available at arXiv math.GR/0010323.

  3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968.

  4. E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57–61.

  5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).

  6. A. M. Cohen, Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379–446.

  7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88–105.

  8. P. B. Cohen, G. Wüstholz, Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker’s garden, Cambridge University Press, London New York 2002, 89–106.

  9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/.

  10. H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London New York 1974.

  11. C. W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81–116.

  12. P. Deligne, Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970.

  13. P. Deligne, Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273–302.

  14. P. Deligne, G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5–89.

  15. P. Deligne, G. D. Mostow, Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993.

  16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.

  17. H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984.

  18. B. Hunt, The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996.

  19. B. Hunt, S. Weintraub, Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507–557.

  20. R.-P. Holzapfel, Chern Numbers of Algebraic Surfaces, Hirzebruch’s Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255–273.

  21. R.-P. Holzapfel, Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7–25.

  22. E. Looijenga, Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109–130.

  23. E. Looijenga, Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151–187, also available at arXiv math.AG/0106228.

  24. B. Malgrange, Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147–176.

  25. J. I. Manin, Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113–126.

  26. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91–106.

  27. P. Orlik, L. Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23–45.

  28. P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992.

  29. H. A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292–335.

  30. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274–304.

  31. G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1–14.

  32. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57–64.

  33. W. P. Thurston, Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997.

  34. W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511–549.

  35. M. Yoshida, Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319–334.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wim Couwenberg, Gert Heckman or Eduard Looijenga.

Additional information

In memory of Peter Slodowy (1948–2002)

About this article

Cite this article

Couwenberg, W., Heckman, G. & Looijenga, E. Geometric Structures on the Complement of a Projective Arrangement. Publ.math.IHES 101, 69–161 (2005). https://doi.org/10.1007/s10240-005-0032-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-005-0032-3

Keywords

Navigation