Skip to main content
Log in

Management of classical Philadelphia chromosome-negative myeloproliferative neoplasms in Asia: consensus of the Asian Myeloid Working Group

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized clinically by the proliferation of one or more hematopoietic lineage(s). The classical Philadelphia-chromosome (Ph)-negative MPNs include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The Asian Myeloid Working Group (AMWG) comprises representatives from fifteen Asian centers experienced in the management of MPN. This consensus from the AMWG aims to review the current evidence in the risk stratification and treatment of Ph-negative MPN, to identify management gaps for future improvement, and to offer pragmatic approaches for treatment commensurate with different levels of resources, drug availabilities and reimbursement policies in its constituent regions. The management of MPN should be patient-specific and based on accurate diagnostic and prognostic tools. In patients with PV, ET and early/prefibrotic PMF, symptoms and risk stratification will guide the need for early cytoreduction. In younger patients requiring cytoreduction and in those experiencing resistance or intolerance to hydroxyurea, recombinant interferon-α preparations (pegylated interferon-α 2A or ropeginterferon-α 2b) should be considered. In myelofibrosis, continuous risk assessment and symptom burden assessment are essential in guiding treatment selection. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in MF should always be based on accurate risk stratification for disease-risk and post-HSCT outcome. Management of classical Ph-negative MPN entails accurate diagnosis, cytogenetic and molecular evaluation, risk stratification, and treatment strategies that are outcome-oriented (curative, disease modification, improvement of quality-of-life).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barbui T, Thiele J, Gisslinger H, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8:15.

    PubMed  PubMed Central  Google Scholar 

  2. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    PubMed  PubMed Central  Google Scholar 

  3. Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;376:2168–81.

    CAS  PubMed  Google Scholar 

  4. Barbui T, Thiele J, Gisslinger H, et al. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood Rev. 2016;30:453–9.

    CAS  PubMed  Google Scholar 

  5. Bittencourt RI, Vassallo J, Chauffaille Mde L, et al. Philadelphia-negative chronic myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 2012;34:140–9.

    PubMed  PubMed Central  Google Scholar 

  6. Gong X, Lu X, Xiao X, et al. Clinicopathologic characteristics of prefibrotic-early primary myelofibrosis in Chinese patients. Hum Pathol. 2014;45:498–503.

    PubMed  Google Scholar 

  7. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22:14–22.

    CAS  PubMed  Google Scholar 

  8. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    PubMed  Google Scholar 

  9. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    CAS  PubMed  Google Scholar 

  10. Hajnalka A, Tunde K, Katalin B, et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica. 2014;99:1184–90.

    Google Scholar 

  11. Tefferi A, Lasho TL, Finke CM, et al. CALR versus JAK2 versus MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.

    CAS  PubMed  Google Scholar 

  12. Tefferi A. Primary myelofibrosis: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89:915–25.

    CAS  PubMed  Google Scholar 

  13. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    CAS  PubMed  Google Scholar 

  14. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123:3714–9.

    CAS  PubMed  Google Scholar 

  17. Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica. 2015;100:e46-48.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rotunno G, Mannarelli C, Guglielmelli P, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123:1552–5.

    CAS  PubMed  Google Scholar 

  19. Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28:1407–13.

    CAS  PubMed  Google Scholar 

  20. Cabagnols X, Favale F, Pasquier F, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–42.

    CAS  PubMed  Google Scholar 

  21. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y-H, Lin C-C, Lee S-H, et al. ASXL1 mutation confers poor prognosis in primary myelofibrosis patients with low JAK2V617F allele burden but not in those with high allele burden. Blood Cancer J. 2020;10:99.

    PubMed  PubMed Central  Google Scholar 

  23. Yeh YM, Chen YL, Cheng HY, et al. High percentage of JAK2 exon 12 mutation in Asian patients with polycythemia vera. Am J Clin Pathol. 2010;134:266–70.

    CAS  PubMed  Google Scholar 

  24. Wu Z, Zhang X, Xu X, et al. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J Hematol Oncol. 2014;7:48.

    PubMed  PubMed Central  Google Scholar 

  25. Gill H, Leung GMK, Yim R, et al. Myeloproliferative neoplasms treated with hydroxyurea, pegylated interferon alpha-2A or ruxolitinib: clinicohematologic responses, quality-of-life changes and safety in the real-world setting. Hematology. 2020;25:247–57.

    CAS  PubMed  Google Scholar 

  26. Kuo MC, Chuang WY, Chang H, et al. Comparison of clinical and molecular features between patients with essential thrombocythemia and early/prefibrotic primary myelofibrosis presenting with thrombocytosis in Taiwan. Am J Clin Pathol. 2023;159(5):474–83.

    CAS  PubMed  Google Scholar 

  27. Gill H, Ip HW, Yim R et al. Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis. Ann Hematol 2018.

  28. Kuo MC, Lin TH, Sun CF, et al. The clinical and prognostic relevance of driver mutations in 203 Taiwanese patients with primary myelofibrosis. J Clin Pathol. 2018;71:514–21.

    CAS  PubMed  Google Scholar 

  29. Fu R, Xuan M, Zhou Y, et al. Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment. Leukemia. 2014;28:1912–4.

    CAS  PubMed  Google Scholar 

  30. Tefferi A, Lasho TL, Huang J, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22:756–61.

    CAS  PubMed  Google Scholar 

  31. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.

    CAS  PubMed  Google Scholar 

  34. Barbui T, Tefferi A, Vannucchi AM, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    PubMed  PubMed Central  Google Scholar 

  35. Guglielmelli P, Pacilli A, Rotunno G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129:3227–36.

    CAS  PubMed  Google Scholar 

  36. Mesa R, Miller CB, Thyne M, et al. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer. 2016;16:167.

    PubMed  PubMed Central  Google Scholar 

  37. Yassin MA, Taher A, Mathews V, et al. MERGE: a multinational, multicenter observational registry for myeloproliferative neoplasms in Asia, including Middle East, Turkey, and Algeria. Cancer Med. 2020;9:4512–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oon SF, Singh D, Tan TH, et al. Primary myelofibrosis: spectrum of imaging features and disease-related complications. Insights Imaging. 2019;10:71.

    PubMed  PubMed Central  Google Scholar 

  39. Meier B, Burton JH. Myeloproliferative disorders. Emerg Med Clin North Am. 2014;32:597–612.

    PubMed  Google Scholar 

  40. Duangnapasatit B, Rattarittamrong E, Rattanathammethee T, et al. Clinical manifestations and risk factors for complications of philadelphia chromosome-negative myeloproliferative neoplasms. Asian Pac J Cancer Prev. 2015;16:5013–8.

    PubMed  Google Scholar 

  41. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.

    CAS  PubMed  Google Scholar 

  42. Spivak JL. Polycythemia Vera. Curr Treat Options Oncol. 2018;19:12.

    PubMed  Google Scholar 

  43. Cuthbert D, Stein BL. Polycythemia vera-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. J Blood Med. 2019;10:359–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Siegel FP, Tauscher J, Petrides PE. Aquagenic pruritus in polycythemia vera: characteristics and influence on quality of life in 441 patients. Am J Hematol. 2013;88:665–9.

    PubMed  Google Scholar 

  45. Denman M, Szur L, Ansell BM. Hyperuricaemia in polycythaemia vera. Ann Rheum Dis. 1966;25:340–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Murakami J, Shimizu Y. Hepatic manifestations in hematological disorders. Int J Hepatol. 2013;2013:484903.

    PubMed  PubMed Central  Google Scholar 

  47. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30:4098–103.

    PubMed  PubMed Central  Google Scholar 

  48. Mesa RA, Niblack J, Wadleigh M, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer. 2007;109:68–76.

    PubMed  Google Scholar 

  49. Scherber R, Dueck AC, Johansson P, et al. The myeloproliferative neoplasm symptom assessment form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118:401–8.

    CAS  PubMed  Google Scholar 

  50. Spivak JL. How I treat polycythemia vera. Blood J Am Soc Hematol. 2019;134:341–52.

    CAS  Google Scholar 

  51. Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(9):1465–87.

    CAS  PubMed  Google Scholar 

  52. Najean Y, Arrago JP, Rain JD, Dresch C. The ‘spent’ phase of polycythaemia vera: hypersplenism in the absence of myelofibrosis. Br J Haematol. 1984;56:163–70.

    CAS  PubMed  Google Scholar 

  53. Mossuz P, Girodon F, Donnard M, et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica. 2004;89:1194–8.

    CAS  PubMed  Google Scholar 

  54. Messinezy M, Westwood NB, El-Hemaidi I, et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol. 2002;117:47–53.

    CAS  PubMed  Google Scholar 

  55. Tefferi A. Diagnosing polycythemia vera: a paradigm shift. Mayo Clin Proc. 1999;74:159–62.

    CAS  PubMed  Google Scholar 

  56. Lupak O, Han X, Xie P, et al. The role of a low erythropoietin level for the polycythemia vera diagnosis. Blood Cells Mol Dis. 2020;80:102355.

    CAS  PubMed  Google Scholar 

  57. Shih LY, Lee CT, See LC, et al. In vitro culture growth of erythroid progenitors and serum erythropoietin assay in the differential diagnosis of polycythaemia. Eur J Clin Invest. 1998;28:569–76.

    CAS  PubMed  Google Scholar 

  58. Millard FE, Hunter CS, Anderson M, et al. Clinical manifestations of essential thrombocythemia in young adults. Am J Hematol. 1990;33:27–31.

    CAS  PubMed  Google Scholar 

  59. Chuzi S, Stein BL. Essential thrombocythemia: a review of the clinical features, diagnostic challenges, and treatment modalities in the era of molecular discovery. Leuk Lymphoma. 2017;58:2786–98.

    CAS  PubMed  Google Scholar 

  60. Barzilai M, Kirgner I, Ellis M, et al. Characteristics and outcome of philadelphia(Ph) negative myeloproliferative neoplasms(MPN) in patients younger than 45 years - a multicenter retrospective study. Blood. 2017;130:2917–2917.

    Google Scholar 

  61. Spivak JL. How I treat polycythemia vera. Blood. 2019;134:341–52.

    CAS  PubMed  Google Scholar 

  62. Guglielmelli P, Pacilli A, Rotunno G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood J Am Soc Hematol. 2017;129:3227–36.

    CAS  Google Scholar 

  63. Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:801–21.

    CAS  PubMed  Google Scholar 

  64. Palandri F, Breccia M, Bonifacio M, et al. Life after ruxolitinib: reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer. 2020;126:1243–52.

    CAS  PubMed  Google Scholar 

  65. Iurlo A, Cattaneo D, Gianelli U. Blast transformation in myeloproliferative neoplasms: risk factors, biological findings, and targeted therapeutic options. Int J Mol Sci. 2019;20:1839.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Suleiman Y, Dalia S, Liu J, et al. Clinical prognostic factors and outcomes of essential thrombocythemia when transformed to myelodysplastic syndrome and acute myeloid leukemia. Blood. 2014;124:1821–1821.

    Google Scholar 

  67. Yogarajah M, Tefferi A. Leukemic transformation in myeloproliferative neoplasms: a literature review on risk, characteristics, and outcome. Mayo Clin Proc. 2017;92:1118–28.

    CAS  PubMed  Google Scholar 

  68. Abdulkarim K, Girodon F, Johansson P, et al. AML transformation in 56 patients with Ph- MPD in two well defined populations. Eur J Haematol. 2009;82:106–11.

    PubMed  Google Scholar 

  69. Cervantes F, Tassies D, Salgado C, et al. Acute transformation in nonleukemic chronic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients. Acta Haematol. 1991;85:124–7.

    CAS  PubMed  Google Scholar 

  70. Tam CS, Nussenzveig RM, Popat U, et al. The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms. Blood. 2008;112:1628–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tefferi A, Rumi E, Finazzi G, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.

    PubMed  Google Scholar 

  73. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    CAS  PubMed  Google Scholar 

  74. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Visser O, Trama A, Maynadié M, et al. Incidence, survival and prevalence of myeloid malignancies in Europe. Eur J Cancer. 2012;48:3257–66.

    CAS  PubMed  Google Scholar 

  76. Noone A, Howlader N, Krapcho M. SEER Cancer Statistics Review, 1975–2015. National Cancer Institute 2018.

  77. Byun JM, Kim YJ, Youk T, et al. Real world epidemiology of myeloproliferative neoplasms: a population based study in Korea 2004–2013. Ann Hematol. 2017;96:373–81.

    PubMed  Google Scholar 

  78. Lim Y, Lee J-O, Bang S-M. Incidence, survival and prevalence statistics of classical myeloproliferative neoplasm in Korea. J Korean Med Sci. 2016;31:1579–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 2014;55:595–600.

    PubMed  Google Scholar 

  80. Moulard O, Mehta J, Fryzek J, et al. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 2014;92:289–97.

    PubMed  Google Scholar 

  81. Yap YY, Law KB, Sathar J, et al. The epidemiology and clinical characteristics of myeloproliferative neoplasms in Malaysia. Exp Hematol Oncol. 2018;7:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kanitsap N. A 12-year retrospective study of myeloproliferative neoplasm patients at Thammasat Hospital. Thammasat Med J. 2019;19(2):285–96.

    Google Scholar 

  83. Gill H, Leung AYH, Chan C-C, et al. Clinicopathologic features and prognostic indicators in Chinese patients with myelofibrosis. Hematology. 2016;21:10–8.

    PubMed  Google Scholar 

  84. Chia PS, Chong VC, Tay TY, et al. Epidemiology of patients with classical Philadelphia-chromosome negative myeloproliferative neoplasms at a single academic medical Center in Singapore. Blood. 2018;132:5478–5478.

    Google Scholar 

  85. Mesa RA, Jamieson C, Bhatia R, et al. NCCN guidelines insights: myeloproliferative neoplasms, version 2.2018. J Natl Comprehens Cancer Netw. 2017;15:1193–207.

    Google Scholar 

  86. Kröger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126–33.

    PubMed  Google Scholar 

  87. Vannucchi AM, Barbui T, Cervantes F, et al. Philadelphia chromosome-negative chronic myeloproliferative neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v85–99.

    PubMed  Google Scholar 

  88. Reilly JT, McMullin MF, Beer PA, et al. Use of JAK inhibitors in the management of myelofibrosis: a revision of the British Committee for Standards in Haematology Guidelines for Investigation and Management of Myelofibrosis 2012. Br J Haematol. 2014;167:418–20.

    CAS  PubMed  Google Scholar 

  89. Reilly JT, McMullin MF, Beer PA, et al. Guideline for the diagnosis and management of myelofibrosis. Br J Haematol. 2012;158:453–71.

    PubMed  Google Scholar 

  90. McMullin MF, Harrison CN, Ali S, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline. Br J Haematol. 2019;184:176–91.

    PubMed  Google Scholar 

  91. Yoon DH, Cao J, Chen T-Y, et al. Treatment of mantle cell lymphoma in Asia: a consensus paper from the Asian Lymphoma Study Group. J Hematol Oncol. 2020;13:21.

    PubMed  PubMed Central  Google Scholar 

  92. Yeoh AE, Tan D, Li CK, et al. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013. Lancet Oncol. 2013;14:e508-523.

    PubMed  PubMed Central  Google Scholar 

  93. Tan D, Tan SY, Lim ST, et al. Management of B-cell non-Hodgkin lymphoma in Asia: resource-stratified guidelines. Lancet Oncol. 2013;14:e548-561.

    PubMed  Google Scholar 

  94. Mesina F, Castillo MRID. Clinical profile and survival of filipino myelofibrosis patients seen in a Tertiary Hospital. Philippine J Intern Med. 2014;52:1–6.

    Google Scholar 

  95. Gong Z, Medeiros LJ, Cortes JE, et al. Cytogenetics-based risk prediction of blastic transformation of chronic myeloid leukemia in the era of TKI therapy. Blood Adv. 2017;1:2541–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Alvarez-Larrán A, Angona A, Ancochea A, et al. Masked polycythaemia vera: presenting features, response to treatment and clinical outcomes. Eur J Haematol. 2016;96:83–9.

    PubMed  Google Scholar 

  97. Barbui T, Thiele J, Gisslinger H, et al. Diagnostic impact of the 2016 revised who criteria for polycythemia vera. Am J Hematol. 2017;92:417–9.

    PubMed  Google Scholar 

  98. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92:94–108.

    CAS  PubMed  Google Scholar 

  99. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33.

    CAS  PubMed  Google Scholar 

  100. Lussana F, Carobbio A, Randi ML, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia vera. Br J Haematol. 2014;167:541–6.

    CAS  PubMed  Google Scholar 

  101. Barbui T, Carobbio A, Rumi E, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014;124:3021–3.

    PubMed  Google Scholar 

  102. Jeryczynski G, Thiele J, Gisslinger B, et al. Pre-fibrotic/early primary myelofibrosis versus WHO-defined essential thrombocythemia: the impact of minor clinical diagnostic criteria on the outcome of the disease. Am J Hematol. 2017;92:885–91.

    CAS  PubMed  Google Scholar 

  103. Gisslinger H, Jeryczynski G, Gisslinger B, et al. Clinical impact of bone marrow morphology for the diagnosis of essential thrombocythemia: comparison between the BCSH and the WHO criteria. Leukemia. 2016;30:1126–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Thiele J, Kvasnicka HM, Müllauer L, et al. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011;117:5710–8.

    CAS  PubMed  Google Scholar 

  105. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European leukemianet. J Clin Oncol. 2011;29:761–70.

    PubMed  PubMed Central  Google Scholar 

  106. Campbell PJ, Scott LM, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005;366:1945–53.

    CAS  PubMed  Google Scholar 

  107. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  PubMed  Google Scholar 

  108. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5:e337.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Busque L, Porwit A, Day R, et al. Laboratory investigation of myeloproliferative neoplasms (MPNs): recommendations of the Canadian MPN group. Am J Clin Pathol. 2016;146:408–22.

    CAS  PubMed  Google Scholar 

  110. Barosi G, Mesa R, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–8.

    CAS  PubMed  Google Scholar 

  111. Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Arber DA, Hasserjian RP, Orazi A, et al. Classification of myeloid neoplasms/acute Leukemia: global perspectives and the international consensus classification approach. Am J Hematol. 2022;97:514–8.

    PubMed  PubMed Central  Google Scholar 

  113. Gerds AT, Gotlib J, Ali H, et al. Myeloproliferative neoplasms, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Comprehens Cancer Netw. 2022;20:1033–62.

    CAS  Google Scholar 

  114. Finazzi G. A prospective analysis of thrombotic events in the European collaboration study on low-dose aspirin in polycythemia (ECLAP). Pathol Biol (Paris). 2004;52:285–8.

    CAS  PubMed  Google Scholar 

  115. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.

    CAS  PubMed  Google Scholar 

  116. Barbui T, Masciulli A, Marfisi MR, et al. White blood cell counts and thrombosis in polycythemia vera: a subanalysis of the CYTO-PV study. Blood. 2015;126:560–1.

    CAS  PubMed  Google Scholar 

  117. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120:5128–33.

    CAS  PubMed  Google Scholar 

  118. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5:e369.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Haider M, Gangat N, Lasho T, et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 Mayo clinic patients. Am J Hematol. 2016;91:390–4.

    PubMed  Google Scholar 

  120. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the international working group for myelofibrosis research and treatment. Blood. 2009;113:2895–901.

    CAS  PubMed  Google Scholar 

  121. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.

    CAS  PubMed  Google Scholar 

  122. Hussein K, Pardanani AD, Van Dyke DL, et al. International prognostic scoring system-independent cytogenetic risk categorization in primary myelofibrosis. Blood. 2010;115:496–9.

    CAS  PubMed  Google Scholar 

  123. Caramazza D, Begna KH, Gangat N, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–8.

    CAS  PubMed  Google Scholar 

  124. Tefferi A, Siragusa S, Hussein K, et al. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis—prognostic relevance is independent of IPSS or karyotype. Am J Hematol. 2010;85:14–7.

    PubMed  Google Scholar 

  125. Elena C, Passamonti F, Rumi E, et al. Red blood cell transfusion-dependency implies a poor survival in primary myelofibrosis irrespective of IPSS and DIPSS. Haematologica. 2011;96:167–70.

    PubMed  Google Scholar 

  126. Patnaik MM, Caramazza D, Gangat N, et al. Age and platelet count are IPSS-independent prognostic factors in young patients with primary myelofibrosis and complement IPSS in predicting very long or very short survival. Eur J Haematol. 2010;84:105–8.

    PubMed  Google Scholar 

  127. Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32:1631–42.

    PubMed  PubMed Central  Google Scholar 

  128. Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36:310–8.

    CAS  PubMed  Google Scholar 

  129. Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ version 20: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. Journal of Clinical Oncology. 2018;36:1769–70.

    PubMed  Google Scholar 

  130. Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31:2726–31.

    CAS  PubMed  Google Scholar 

  131. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24.

    CAS  PubMed  Google Scholar 

  132. Hernández-Boluda JC, Gómez M. Target hematologic values in the management of essential thrombocythemia and polycythemia vera. Eur J Haematol. 2015;94:4–11.

    PubMed  Google Scholar 

  133. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2019;94:133–43.

    PubMed  Google Scholar 

  134. Bose P, Verstovsek S. Updates in the management of polycythemia vera and essential thrombocythemia. Therapeut Adv Hematol. 2019;10:204062071987005.

    Google Scholar 

  135. Paranagama D, Colucci P, Evans KA, et al. Are patients with high-risk polycythemia vera receiving cytoreductive medications? A retrospective analysis of real-world data. Exp Hematol Oncol. 2018;7:1–6.

    Google Scholar 

  136. Mancuso S, Santoro M, Accurso V, et al. cardiovascular risk in polycythemia vera: thrombotic risk and survival: Can cytoreductive therapy be useful in patients with low-risk polycythemia vera with cardiovascular risk factors? Oncol Res Treat. 2020;43:526–30.

    PubMed  Google Scholar 

  137. Marchetti M, Vannucchi AM, Griesshammer M, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022;9:e301–11.

    CAS  PubMed  Google Scholar 

  138. Sankar K, Stein BL. Do all patients with polycythemia vera or essential thrombocythemia need cytoreduction? J Natl Compr Canc Netw. 2018;16:1539–45.

    CAS  PubMed  Google Scholar 

  139. Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7:e196–208.

    PubMed  Google Scholar 

  140. Antonioli E, Guglielmelli P, Pieri L, et al. Hydroxyurea-related toxicity in 3,411 patients with Ph’-negative MPN. Am J Hematol. 2012;87:552–4.

    PubMed  Google Scholar 

  141. Ferrari A, Carobbio A, Masciulli A, et al. Clinical outcomes under hydroxyurea treatment in polycythemia vera: a systematic review and meta-analysis. Haematologica. 2019;104:2391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Björkholm M, Derolf ÅR, Hultcrantz M, et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29:2410–5.

    PubMed  PubMed Central  Google Scholar 

  143. Demuynck T, Verhoef G, Delforge M, et al. Polycythemia vera and hydroxyurea resistance/intolerance: a monocentric retrospective analysis. Ann Hematol. 2019;98:1421–6.

    CAS  PubMed  Google Scholar 

  144. Malato A, Rossi E, Palumbo GA, et al. Drug-related cutaneous adverse events in Philadelphia chromosome-negative myeloproliferative neoplasms: a literature review. Int J Mol Sci. 2020;21:3900.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Masarova L, Yin CC, Cortes JE, et al. Histomorphological responses after therapy with pegylated interferon α-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp Hematol Oncol. 2017;6:1–13.

    Google Scholar 

  146. How J, Hobbs G. Use of interferon alfa in the treatment of myeloproliferative neoplasms: perspectives and review of the literature. Cancers. 2020;12:1954.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yacoub A, Mascarenhas J, Kosiorek H, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134:1498–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Quintás-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon Alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.

    PubMed  PubMed Central  Google Scholar 

  149. Quintás-Cardama A, Abdel-Wahab O, Manshouri T, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood. 2013;122:893–901.

    PubMed  PubMed Central  Google Scholar 

  150. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35.

    PubMed  PubMed Central  Google Scholar 

  152. Griesshammer M, Saydam G, Palandri F, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly: 80-week follow-up from the RESPONSE-2 trial. Ann Hematol. 2018;97:1591–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hasselbalch HC, Bjorn ME. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:1670.

    PubMed  Google Scholar 

  154. Passamonti F, Griesshammer M, Palandri F, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18:88–99.

    CAS  PubMed  Google Scholar 

  155. Verstovsek S, Vannucchi AM, Griesshammer M, et al. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica. 2016;101:821–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kiladjian J-J, Winton EF, Talpaz M, Verstovsek S. Ruxolitinib for the treatment of patients with polycythemia vera. Expert Rev Hematol. 2015;8:391–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Parasuraman S, Dibonaventura M, Reith K, et al. Patterns of hydroxyurea use and clinical outcomes among patients with polycythemia vera in real-world clinical practice: a chart review. Exp Hematol Oncol. 2015;5:1–10.

    Google Scholar 

  158. Mascarenhas J, Mesa R, Prchal J, Hoffman R. Optimal therapy for polycythemia vera and essential thrombocythemia can only be determined by the completion of randomized clinical trials. Haematologica. 2014;99:945–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kuriakose ET, Gjoni S, Wang YL, et al. JAK2V617F allele burden is reduced by busulfan therapy: a new observation using an old drug. Haematologica. 2013;98:e135–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Alvarez-Larrán A, Martínez-Avilés L, Hernández-Boluda JC, et al. Busulfan in patients with polycythemia vera or essential thrombocythemia refractory or intolerant to hydroxyurea. Ann Hematol. 2014;93:2037–43.

    PubMed  Google Scholar 

  161. Forsyth CJ, Chan WH, Grigg AP, et al. Recommendations for the use of pegylated interferon-α in the treatment of classical myeloproliferative neoplasms. Intern Med J. 2019;49:948–54.

    PubMed  Google Scholar 

  162. Kiladjian JJ, Chomienne C, Fenaux P. Interferon-α therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22:1990–8.

    CAS  PubMed  Google Scholar 

  163. Alvarez-Larrán A, Pereira A, Cervantes F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood J Am Soc Hematol. 2012;119:1363–9.

    Google Scholar 

  164. Alvarez-Larrán A, Sant’Antonio E, Harrison C, et al. Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: a consensus-based proposal from the European LeukemiaNet. Lancet Haematol. 2021;8:e658–65.

    PubMed  Google Scholar 

  165. Sarma A, McLornan D, Harrison CN. Spotlight on anagrelide hydrochloride for the treatment of essential thrombocythemia. Orphan Drugs Res Rev. 2017;7:11–23.

    Google Scholar 

  166. Galvez C, Stein BL. Thrombocytosis and thrombosis: Is there really a correlation? Curr Hematol Malig Rep. 2020;15:261–7.

    PubMed  Google Scholar 

  167. Espasandin YR, Glembotsky AC, Grodzielski M, et al. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms. J Thromb Haemost. 2015;13:631–42.

    CAS  PubMed  Google Scholar 

  168. Mazzucconi MG, Baldacci E, Latagliata R, et al. Anagrelide in essential thrombocythemia (ET): results from 150 patients over 25 years by the “Ph1-negative myeloproliferative neoplasms Latium group.” Eur J Haematol. 2020;105:335–43.

    CAS  PubMed  Google Scholar 

  169. Birgegård G, Besses C, Griesshammer M, et al. Treatment of essential thrombocythemia in Europe: a prospective long-term observational study of 3649 high-risk patients in the evaluation of anagrelide efficacy and long-term safety study. Haematologica. 2018;103:51–60.

    PubMed  PubMed Central  Google Scholar 

  170. Ito T, Hashimoto Y, Tanaka Y, et al. Efficacy and safety of anagrelide as a first-line drug in cytoreductive treatment-naïve essential thrombocythemia patients in a real-world setting. Eur J Haematol. 2019;103:116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Birgegård G. The use of anagrelide in myeloproliferative neoplasms, with focus on essential thrombocythemia. Curr Hematol Malig Rep. 2016;11:348–55.

    PubMed  PubMed Central  Google Scholar 

  172. Birgegård G, Folkvaljon F, Garmo H, et al. Leukemic transformation and second cancers in 3649 patients with high-risk essential thrombocythemia in the EXELS study. Leuk Res. 2018;74:105–9.

    PubMed  Google Scholar 

  173. Besses C, Kiladjian J-J, Griesshammer M, et al. Cytoreductive treatment patterns for essential thrombocythemia in Europe. Analysis of 3643 patients in the EXELS study. Leukemia Res. 2013;37:162–8.

    Google Scholar 

  174. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    CAS  PubMed  Google Scholar 

  176. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ejerblad E, Kvasnicka HM, Thiele J, et al. Diagnosis according to World Health Organization determines the long-term prognosis in patients with myeloproliferative neoplasms treated with anagrelide: Results of a prospective long-term follow-up. Hematology. 2013;18:8–13.

    PubMed  Google Scholar 

  178. Alimam S, Wilkins BS, Harrison CN. How we diagnose and treat essential thrombocythaemia. Br J Haematol. 2015;171:306–21.

    PubMed  Google Scholar 

  179. Harrison CN, Mead AJ, Panchal A, et al. Ruxolitinib versus best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood J Am Soc Hematol. 2017;130:1889–97.

    CAS  Google Scholar 

  180. Breccia M, Baratè C, Benevolo G, et al. Tracing the decision-making process for myelofibrosis: diagnosis, stratification, and management of ruxolitinib therapy in real-word practice. Ann Hematol. 2020;99:65–72.

    PubMed  Google Scholar 

  181. Group NMS. Nordic guidelines on the diagnosis and treatment of patients with Myeloproliferative Neoplasms. In. 2019.

  182. Petruk C, Mathias J. The myeloproliferative neoplasm landscape: a patient’s eye view. Adv Ther. 2020;37:2050–70.

    PubMed  PubMed Central  Google Scholar 

  183. Naymagon L, Mascarenhas J. Myelofibrosis-related anemia. HemaSphere. 2017;1: e1.

    PubMed  PubMed Central  Google Scholar 

  184. Agarwal MB, Malhotra H, Chakrabarti P, et al. Myeloproliferative neoplasms working group consensus recommendations for diagnosis and management of primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Indian J Med Paediatr Oncol Off J Indian Soc Med Paediatr Oncol. 2015;36:3–16.

    CAS  Google Scholar 

  185. Choi CW, Bang S-M, Jang S, et al. Guidelines for the management of myeloproliferative neoplasms. Korean J Intern Med. 2015;30:771–88.

    PubMed  PubMed Central  Google Scholar 

  186. Greenfield G, McPherson S, Mills K, McMullin MF. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. Journal of Translational Medicine 2018;16.

  187. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.

    CAS  PubMed  Google Scholar 

  189. Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10:55.

    PubMed  PubMed Central  Google Scholar 

  190. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30:1701–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10:156.

    PubMed  PubMed Central  Google Scholar 

  192. Masarova L, Bose P, Pemmaraju N, et al. Improved survival of patients with myelofibrosis in the last decade: single-center experience. Cancer. 2022;128:1658–65.

    PubMed  Google Scholar 

  193. Guglielmelli P, Ghirardi A, Carobbio A, et al. Impact of ruxolitinib on survival of patients with myelofibrosis in the real world: update of the ERNEST Study. Blood Adv. 2022;6:373–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Mead AJ, Milojkovic D, Knapper S, et al. Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol. 2015;170:29–39.

    CAS  PubMed  Google Scholar 

  195. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101:1065–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. McLornan DP, Harrison CN. Guidance on changing therapy choice in myelofibrosis. Blood Adv. 2020;4:607–10.

    PubMed  PubMed Central  Google Scholar 

  197. Bewersdorf JP, Jaszczur SM, Afifi S, et al. Beyond ruxolitinib: fedratinib and other emergent treatment options for myelofibrosis. Cancer Manag Res. 2019;11:10777–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Mullally A, Hood J, Harrison C, Mesa R. Fedratinib in myelofibrosis. Blood. Advances. 2020;4:1792–800.

    CAS  Google Scholar 

  199. Kvasnicka HM. How to define treatment failure for JAK inhibitors. Lancet Haematol. 2017;4:e305–6.

    PubMed  Google Scholar 

  200. Harrison CN, Schaap N, Mesa RA. Management of myelofibrosis after ruxolitinib failure. Ann Hematol. 2020;99:1177–91.

    PubMed  PubMed Central  Google Scholar 

  201. Gupta V, Cerquozzi S, Foltz L, et al. Patterns of ruxolitinib therapy failure and its management in myelofibrosis: perspectives of the Canadian myeloproliferative neoplasm group. JCO Oncol Pract. 2020;16:351–9.

    PubMed  PubMed Central  Google Scholar 

  202. Harrison CN, Schaap N, Vannucchi AM, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4:e317–24.

    PubMed  PubMed Central  Google Scholar 

  203. Gerds AT, Savona MR, Scott BL, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020;4:5825–35.

    PubMed  PubMed Central  Google Scholar 

  204. Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130:1125–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Kuykendall AT, Shah S, Talati C, et al. Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Ann Hematol. 2018;97:435–41.

    CAS  PubMed  Google Scholar 

  206. Patel KP, Newberry KJ, Luthra R, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126:790–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Gill H, Leung GMK, Seto WK, Kwong YL. Risk of viral reactivation in patients with occult hepatitis B virus infection during ruxolitinib treatment. Ann Hematol. 2019;98:215–8.

    CAS  PubMed  Google Scholar 

  208. Gagelmann N, Passamonti F, Wolschke C, et al. Antibody response after vaccination against SARS-CoV-2 in adults with hematological malignancies: a systematic review and meta-analysis. Haematologica. 2022;107:1840–9.

    CAS  PubMed  Google Scholar 

  209. Pemmaraju N, Kantarjian H, Nastoupil L, et al. Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy. Blood. 2019;133:2348–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Saha C, Harrison C. Fedratinib, the first selective JAK2 inhibitor approved for treatment of myelofibrosis - an option beyond ruxolitinib. Expert Rev Hematol. 2022;15:583–95.

    CAS  PubMed  Google Scholar 

  211. Talpaz M, Kiladjian JJ. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia. 2021;35:1–17.

    CAS  PubMed  Google Scholar 

  212. Jiang Q, Jamieson C. BET’ing on dual JAK/BET inhibition as a therapeutic strategy for myeloproliferative neoplasms. Cancer Cell. 2018;33:3–5.

    CAS  PubMed  Google Scholar 

  213. Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33:29–43.

    CAS  PubMed  Google Scholar 

  214. Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis. JAMA Oncol. 2015;1:643.

    PubMed  Google Scholar 

  215. Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol. 2020;95:594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pardanani A, Tefferi A, Masszi T, et al. Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis. Br J Haematol. 2021;195:244–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Mesa RA, Schaap N, Vannucchi AM, et al. Patient-reported effects of fedratinib, an oral, selective inhibitor of Janus kinase 2, on myelofibrosis-related symptoms and health-related quality of life in the randomized, placebo-controlled. Phase III JAKARTA Trial Hemasphere. 2021;5:e553.

    CAS  PubMed  Google Scholar 

  218. Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib improves myelofibrosis-related symptoms and health-related quality of life in patients with myelofibrosis previously treated with ruxolitinib: patient-reported outcomes from the phase II JAKARTA2 trial. Hemasphere. 2021;5:e562.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Venugopal S, Mascarenhas J. The odyssey of pacritinib in myelofibrosis. Blood Adv. 2022;6:4905–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib versus best available therapy, including ruxolitinib, in patients with myelofibrosis. JAMA Oncol. 2018;4:652.

    PubMed  PubMed Central  Google Scholar 

  221. Diaz AE, Mesa RA. Pacritinib and its use in the treatment of patients with myelofibrosis who have thrombocytopenia. Fut Oncol. 2018;14:797–807.

    CAS  Google Scholar 

  222. Verstovsek S, Komrokji RS. A comprehensive review of pacritinib in myelofibrosis. Fut Oncol. 2015;11:2819–30.

    CAS  Google Scholar 

  223. Tremblay D, Mascarenhas J. Pacritinib to treat myelofibrosis patients with thrombocytopenia. Expert Rev Hematol. 2018;11:707–14.

    CAS  PubMed  Google Scholar 

  224. Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4:e225–36.

    PubMed  PubMed Central  Google Scholar 

  225. Singer J, Al-Fayoumi S, Ma H, et al. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol. 2016;8:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Marcellino BK, Verstovsek S, Mascarenhas J. The myelodepletive phenotype in myelofibrosis: clinical relevance and therapeutic implication. Clin Lymphoma Myeloma Leuk. 2020;20:415–21.

    PubMed  Google Scholar 

  227. Tremblay D, Mesa R, Scott B, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020;4:5929–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Verstovsek S, Mesa R, Talpaz M, et al. Retrospective analysis of pacritinib in patients with myelofibrosis and severe thrombocytopenia. Haematologica. 2022;107:1599–607.

    CAS  PubMed  Google Scholar 

  229. Asshoff M, Petzer V, Warr MR, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017;129:1823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Xu L, Feng J, Gao G, Tang H. Momelotinib for the treatment of myelofibrosis. Expert Opin Pharmacother. 2019;20:1943–51.

    CAS  PubMed  Google Scholar 

  231. Oh ST, Talpaz M, Gerds AT, et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Adv. 2020;4:4282–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Tefferi A, Pardanani A, Gangat N. Momelotinib (JAK1/JAK2/ACVR1 inhibitor): mechanism of action, clinical trial reports, and therapeutic prospects beyond myelofibrosis. Haematologica 2023.

  233. Kubasch AS, Fenaux P, Platzbecker U. Development of luspatercept to treat ineffective erythropoiesis. Blood Adv. 2021;5:1565–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Gupta V, Mesa RA, Deininger MWN, et al. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis. Haematologica. 2017;102:94–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Mesa RA, Kiladjian JJ, Catalano JV, et al. SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol. 2017;35:3844–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5:e73–81.

    PubMed  Google Scholar 

  237. Mesa R, Harrison C, Oh ST, et al. Overall survival in the SIMPLIFY-1 and SIMPLIFY-2 phase 3 trials of momelotinib in patients with myelofibrosis. Leukemia. 2022;36:2261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Verstovsek S, Gerds AT, Vannucchi AM, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study. Lancet. 2023;401:269–80.

    CAS  PubMed  Google Scholar 

  239. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10:1–6.

    Google Scholar 

  240. Arana Yi C, Tam CS, Verstovsek S. Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis. Future Oncol. 2015;11:719–33.

    CAS  PubMed  Google Scholar 

  241. Peng Y, Meng L, Hu X, et al. Tuberculosis in patients with primary myelofibrosis during ruxolitinib therapy: case series and literature review. Infect Drug Resist. 2020;13:3309–16.

    PubMed  PubMed Central  Google Scholar 

  242. Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93:339–47.

    CAS  PubMed  Google Scholar 

  243. Elli EM, Baratè C, Mendicino F, et al. Mechanisms underlying the anti-inflammatory and immunosuppressive activity of ruxolitinib. Front Oncol. 2019;9:1186.

    PubMed  PubMed Central  Google Scholar 

  244. Heine A, Brossart P, Wolf D. Ruxolitinib is a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood J Am Soc Hematol. 2013;122:3843–4.

    CAS  Google Scholar 

  245. Malato A, Rossi E, Tiribelli M, et al. Splenectomy in myelofibrosis: indications, efficacy, and complications. Clin Lymphoma Myeloma Leuk. 2020;20:588–95.

    PubMed  Google Scholar 

  246. McLornan DP, Yakoub-Agha I, Robin M, et al. State-of-the-art review: allogeneic stem cell transplantation for myelofibrosis in 2019. Haematologica. 2019;104:659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Devlin R, Gupta V. Myelofibrosis: To transplant or not to transplant? Hematology. 2016;2016:543–51.

    PubMed  PubMed Central  Google Scholar 

  248. Passamonti F. Stem cell transplant in MF: it’s time to personalize. Blood. 2019;133:2118–20.

    CAS  PubMed  Google Scholar 

  249. Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42.

    CAS  PubMed  Google Scholar 

  250. Shanavas M, Messner HA, Atenafu EG, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis using fludarabine-, intravenous busulfan- and low-dose TBI-based conditioning. Bone Marrow Transp. 2014;49:1162–9.

    CAS  Google Scholar 

  251. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for blood and marrow transplantation. Blood. 2009;114:5264–70.

    PubMed  Google Scholar 

  252. Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib therapy followed by reduced-intensity conditioning for hematopoietic cell transplantation for myelofibrosis: myeloproliferative disorders research consortium 114 study. Biol Blood Marrow Transpl. 2019;25:256–64.

    CAS  Google Scholar 

  253. Bensinger WI. Allogeneic transplantation. Curr Opin Oncol. 2012;24:191–6.

    PubMed  PubMed Central  Google Scholar 

  254. Masarova L, Verstovsek S, Hidalgo-Lopez JE, et al. A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood. 2018;132:1664–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Masarova L, Verstovsek S, Bose P, et al. Phase 2 study of ruxolitinib (RUX) in combination with 5-azacitidine (AZA) in patients (pts) with myelofibrosis. Blood. 2019;134:1656–1656.

    Google Scholar 

  256. Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease. Chest. 2016;149:315–52.

    PubMed  Google Scholar 

  257. De Stefano V, Finazzi G, Barbui T. Antithrombotic therapy for venous thromboembolism in myeloproliferative neoplasms. Blood Cancer J. 2018;8:65.

    PubMed  PubMed Central  Google Scholar 

  258. Szuber N, Vallapureddy RR, Penna D, et al. Myeloproliferative neoplasms in the young: Mayo clinic experience with 361 patients age 40 years or younger. Am J Hematol. 2018;93:1474–84.

    CAS  PubMed  Google Scholar 

  259. Maze D, Kazi S, Gupta V, et al. Association of treatments for myeloproliferative neoplasms during pregnancy with birth rates and maternal outcomes. JAMA Netw Open. 2019;2:e1912666.

    PubMed  PubMed Central  Google Scholar 

  260. Barbui T, Finazzi G. Special Issues in Myeloproliferative Neoplasms. Curr Hematol Malignancy Rep. 2011;6:28–35.

    Google Scholar 

  261. Robinson SE, Harrison CN. How we manage Philadelphia-negative myeloproliferative neoplasms in pregnancy. Br J Haematol. 2020;189:625–34.

    PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

HG and YLK conceived the idea of the consensus, wrote and approved the manuscript. GMKL, MGMO, WT, CLW, CWC, GCW, ZL, PR, IR, ZX, HAH, MCK, LYS, GGG, CCL and WJC reviewed and approved the manuscript.

Corresponding author

Correspondence to Harinder Gill.

Ethics declarations

Conflict of interest

Harinder Gill has the following disclosures: research funding/grants from Celgene, Novartis Oncology and PharmaEssentia Corporation; investigator-initiated study collaborations with Imago Biosciences Inc., PharmaEssentia Corporation and Novartis; Consultancies for Abbvie, Astellas, BMS, GSK, Novartis Oncology and PharmaEssentia Corporation; Conference support from Novartis and PharmaEssentia Corporation. All other authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, H., Leung, G.M.K., Ooi, M.G.M. et al. Management of classical Philadelphia chromosome-negative myeloproliferative neoplasms in Asia: consensus of the Asian Myeloid Working Group. Clin Exp Med 23, 4199–4217 (2023). https://doi.org/10.1007/s10238-023-01189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01189-9

Keywords

Navigation