Skip to main content

Advertisement

Log in

Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Iannuzzi JP, King JA, Leong JH, Quan J, Windsor JW, Tanyingoh D, Coward S, Forbes N, Heitman SJ, Shaheen AA, Swain M. Global incidence of acute pancreatitis is increasing over time: a systematic review and meta-analysis. Gastroenterology. 2022;162(1):122–34.

    PubMed  Google Scholar 

  2. Sandoval DI, Gukovskaya AN, Reavey PA, Gukovsky SO, Sisk AB, Braquet PI, Pandol SJ, Poucell-Hatton SI. The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology. 1996;111(4):1081–91.

    CAS  PubMed  Google Scholar 

  3. Williams JA. The nobel pancreas: a historical perspective. Gastroenterology. 2013;144(6):1166–9.

    PubMed  Google Scholar 

  4. Hines OJ, Pandol SJ. Management of severe acute pancreatitis. BMJ. 2019;2:367.

    Google Scholar 

  5. Talukdar R, Vege SS. Recent developments in acute pancreatitis. Clin Gastroenterol Hepatol. 2009;7(11):S3-9.

    CAS  PubMed  Google Scholar 

  6. Fagenholz PJ, Fernandez-del Castillo C, Harris NS, Pelletier AJ, Camargo CA. National study of United States emergency department visits for acute pancreatitis, 1993–2003. BMC Emerg Med. 2007;7(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  7. Fagenholz PJ, Fernandez-del Castillo C, Harris NS, Pelletier AJ, Camargo CA Jr. Increasing United States hospital admissions for acute pancreatitis, 1988–2003. Ann Epidemiol. 2007;17(7):491-e1.

    PubMed  Google Scholar 

  8. Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):175–84.

    PubMed  PubMed Central  Google Scholar 

  9. Buter A, Imrie C, Carter C, Evans S, McKay C. Dynamic nature of early organ dysfunction determines outcome in acute pancreatitis. Br J Surg. 2002;89(3):298–302.

    CAS  PubMed  Google Scholar 

  10. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, Jensen ET, Shaheen NJ, Barritt AS, Lieber SR, Kochar B. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019;156(1):254–72.

    PubMed  Google Scholar 

  11. Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 2019;156(7):1951–68.

    CAS  PubMed  Google Scholar 

  12. Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD. NF-κB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology. 2002;122(2):448–57.

    CAS  PubMed  Google Scholar 

  13. Frossard JL, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, Steer ML. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology. 1999;116(3):694–701.

    CAS  PubMed  Google Scholar 

  14. Chen G, Xu F, Li J, Lu S. Depletion of neutrophils protects against L-arginine-induced acute pancreatitis in mice. Cell Physiol Biochem. 2015;35(6):2111–20.

    CAS  PubMed  Google Scholar 

  15. Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL, Riva D, Mendez L, Uzel G, Freeman AF, Olivier KN. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood. 2016;128(17):2135–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.

    CAS  PubMed  Google Scholar 

  17. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    CAS  PubMed  Google Scholar 

  18. Hu J, Kang H, Chen H, Yao J, Yi X, Tang W, Wan M. Targeting neutrophil extracellular traps in severe acute pancreatitis treatment. Ther Adv Gastroenterol. 2020;13:1756284820974913.

    CAS  Google Scholar 

  19. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211.

    CAS  PubMed  Google Scholar 

  20. Castanheira FV, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–85.

    CAS  PubMed  Google Scholar 

  21. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113.

    PubMed  PubMed Central  Google Scholar 

  22. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    CAS  PubMed  Google Scholar 

  23. Görgens A, Radtke S, Möllmann M, Cross M, Dürig J, Horn PA, Giebel B. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 2013;3(5):1539–52.

    PubMed  Google Scholar 

  24. Campbell MS, Lovell MA, Gorbsky GJ. Stability of nuclear segments in human neutrophils and evidence against a role for microfilaments or microtubules in their genesis during differentiation of HL60 myelocytes. J Leukoc Biol. 1995;58(6):659–66.

    CAS  PubMed  Google Scholar 

  25. Mollinedo F, Calafat J, Janssen H, Martín-Martín B, Canchado J, Nabokina SM, Gajate C. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J Immunol. 2006;177(5):2831–41.

    CAS  PubMed  Google Scholar 

  26. Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol. 2019;40(7):648–64.

    CAS  PubMed  Google Scholar 

  27. Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair. 2013;6(1):1–10.

    Google Scholar 

  28. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8(3):883–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Farley K, Stolley JM, Zhao P, Cooley J, Remold-O’Donnell E. A serpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. J Immunol. 2012;189(9):4574–81.

    CAS  PubMed  Google Scholar 

  31. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hughes V, Humphreys JM, Edwards SW. Protein synthesis is activated in primed neutrophils: a possible role in inflammation. Biosci Rep. 1987;7(11):881–90.

    CAS  PubMed  Google Scholar 

  33. Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol. 1999;73:369–509.

    CAS  PubMed  Google Scholar 

  34. de Oliveira DE, Müller-Coan BG, Pagano JS. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol. 2016;24(8):649–64.

    PubMed Central  Google Scholar 

  35. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.

    CAS  PubMed  Google Scholar 

  36. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsh E, Sozzani S, Cassatella MA. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol. 2011;32(3):117–24.

    CAS  PubMed  Google Scholar 

  37. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.

    CAS  PubMed  Google Scholar 

  38. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.

    CAS  PubMed  Google Scholar 

  39. Häger M, Cowland J, Borregaard N. Neutrophil granules in health and disease. J Intern Med. 2010;268(1):25–34.

    PubMed  Google Scholar 

  40. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

    CAS  PubMed  Google Scholar 

  41. Scapini P, Cassatella MA. Social networking of human neutrophils within the immune system. Blood. 2014;124(5):710–9.

    CAS  PubMed  Google Scholar 

  42. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O, Steffens S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38(3):187–97.

    CAS  PubMed  Google Scholar 

  43. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    CAS  PubMed  Google Scholar 

  44. Yang ZW, Meng XX, Xu P. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J Cell Mol Med. 2015;19(11):2513–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun. 2013;5(4):304–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, Chimen M, Sawtell AK, Hamza B, Willson J, Walmsley SR, Anderson SR. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med. 2014;6(225):225ra29.

    PubMed  PubMed Central  Google Scholar 

  47. Nourshargh S, Renshaw SA, Imhof BA. Reverse migration of neutrophils: where, when, how, and why? Trends Immunol. 2016;37(5):273–86.

    CAS  PubMed  Google Scholar 

  48. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017;358(6359):111–6.

    CAS  PubMed  Google Scholar 

  49. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Savill J. Apoptosis in resolution of inflammation. J Leukoc Biol. 1997;61(4):375–80.

    CAS  PubMed  Google Scholar 

  51. Savill J, Savill J. Apoptosis in post-streptococcal glomerulonephritis. Kidney Int. 2001;60(3):1203–14.

    CAS  PubMed  Google Scholar 

  52. Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018;9:2171.

    PubMed  PubMed Central  Google Scholar 

  53. Habtezion A. Inflammation in acute and chronic pancreatitis. Curr Opin Gastroenterol. 2015;31(5):395–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gukovskaya AS, Gukovsky I, Jung Y, Mouria M, Pandol SJ. Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. J Biol Chem. 2000;2:22595–604.

    Google Scholar 

  55. Abdulla A, Awla D, Thorlacius H, Regnér S. Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J Leukoc Biol. 2011;90(5):975–82.

    CAS  PubMed  Google Scholar 

  56. Awla DAA, Syk I, Jeppsson B, Regnér S, Thorlacius H. Neutrophil-derived matrix metalloproteinase-9 is a potent activator of trypsinogen in acinar cells in acute pancreatitis. J Leukoc Biol. 2012;91(5):711–9.

    CAS  PubMed  Google Scholar 

  57. Yu C, Merza M, Luo L, Thorlacius H. Inhibition of Ras signalling reduces neutrophil infiltration and tissue damage in severe acute pancreatitis. Eur J Pharmacol. 2015;746:245–51.

    CAS  PubMed  Google Scholar 

  58. Lin Y, Chen Y, Feng W, Zhang J, Hua R, Yin B, Yang X. STAT5 promotes chronic pancreatitis by enhancing GM-CSF-dependent neutrophil augmentation. J Leukoc Biol. 2021;110(2):293–300.

    CAS  PubMed  Google Scholar 

  59. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–21.

    CAS  PubMed  Google Scholar 

  60. Gukovskaya AS, Vaquero E, Zaninovic V, Gorelick FS, Lusis AJ, Brennan ML, Holland S, Pandol SJ. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology. 2002;122(4):974–84.

    CAS  PubMed  Google Scholar 

  61. Sendler M, Dummer A, Weiss FU, Krüger B, Wartmann T, Scharffetter-Kochanek K, van Rooijen N, Malla SR, Aghdassi A, Halangk W, Lerch MM. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut. 2013;62(3):430–9.

    CAS  PubMed  Google Scholar 

  62. Henry KM, Loynes CA, Whyte MK, Renshaw SA. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 2013;94(4):633–42.

    CAS  PubMed  Google Scholar 

  63. Fournier B, Parkos C. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5(4):354–66.

    CAS  PubMed  Google Scholar 

  64. Douda DN, Yip L, Khan MA, Grasemann H, Palaniyar N. Akt is essential to induce NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. Blood. 2014;114(18):3769–72.

    Google Scholar 

  65. Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis-awaiting the big leap. Respir Med. 2012;106(9):1199–210.

    PubMed  Google Scholar 

  66. Yang R, Tenhunen J, Tonnessen TI. HMGB1 and histones play a significant role in inducing systemic inflammation and multiple organ dysfunctions in severe acute pancreatitis. Int J Inflamm. 2017. https://doi.org/10.1155/2017/1817564.

    Article  Google Scholar 

  67. Yuan Z, Meyerholz DK, Twait EC, Kempuraj D, Williard DE, Samuel I. Systemic inflammation with multiorgan dysfunction is the cause of death in murine ligation-induced acute pancreatitis. J Gastrointest Surg. 2011;15(10):1670–8.

    PubMed  Google Scholar 

  68. Davies M, Hagen P. Systemic inflammatory response syndrome. Br J Surg. 1997;84(7):920–35.

    CAS  PubMed  Google Scholar 

  69. Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101(3):189–98.

    CAS  PubMed  Google Scholar 

  70. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.

    CAS  PubMed  Google Scholar 

  71. Cheng DS, Han W, Chen SM, Sherrill TP, Chont M, Park GY, Sheller JR, Polosukhin VV, Christman JW, Yull FE, Blackwell TS. Airway epithelium controls lung inflammation and injury through the NF-κB pathway. J Immunol. 2007;178(10):6504–13.

    CAS  PubMed  Google Scholar 

  72. Yang H, Lee CJ, Zhang L, Sans MD, Simeone DM. Regulation of transforming growth factor β-induced responses by protein kinase A in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2008;295(1):G170-78.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD. Efron PA 2017 Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta BBA Mol Basis Dis. 1863;10:2564–73.

    Google Scholar 

  74. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol. 2004;172(1):20–4.

    CAS  PubMed  Google Scholar 

  75. Sharif R, Dawra R, Wasiluk K, Phillips P, Dudeja V, Kurt-Jones E, Finberg R, Saluja A. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58(6):813–9.

    CAS  PubMed  Google Scholar 

  76. Zeytun A, Chaudhary A, Pardington P, Cary RB, Gupta G. Induction of cytokines and chemokines by toll-like receptor signaling: strategies for control of infammation. Crit Rev Immunol. 2010;30(1):53–67.

    CAS  PubMed  Google Scholar 

  77. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X. HMGB1 in health and disease. Mol Aspects Med. 2014;40:1–16.

    CAS  PubMed  Google Scholar 

  78. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9(4):401–10.

    PubMed  Google Scholar 

  79. Ulloa L, Tracey KJ. The ‘cytokine profile’: a code for sepsis. Trends Mol Med. 2005;11(2):56–63.

    CAS  PubMed  Google Scholar 

  80. Eppensteiner J, Davis RP, Barbas AS, Kwun J, Lee J. Immunothrombotic activity of damage-associated molecular patterns and extracellular vesicles in secondary organ failure induced by trauma and sterile insults. Front Immunol. 2018;9:190.

    PubMed  PubMed Central  Google Scholar 

  81. Swank DW, Moore SB. 1989 Roles of the neutrophil and other mediators in adult respiratory distress syndrome. In: Mayo Clinic proceedings 1989, vol. 64, pp. 1118–1132.

  82. Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993;54(2):171–8.

    CAS  PubMed  Google Scholar 

  83. Metnitz P, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med. 1999;25(2):180–5.

    CAS  PubMed  Google Scholar 

  84. Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery. 1995;118(2):358–65.

    CAS  PubMed  Google Scholar 

  85. Botha AJ, Moore FA, Moore EE, Saluja A, Banerjee A, Peterson VM. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J Trauma Acute Care Surg. 1995;39(3):411–7.

    CAS  Google Scholar 

  86. Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, Rittirsch D, Wilharm A, Kurzai O, Bauer M, Claus RA. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. 2014;18(5):1–9.

    Google Scholar 

  87. Oiva J, Mustonen H, Kylänpää M-L, Kuuliala K, Siitonen S, Kemppainen E, Puolakkainen P, Repo H. Patients with acute pancreatitis complicated by organ dysfunction show abnormal peripheral blood polymorphonuclear leukocyte signaling. Pancreatology. 2013;13(2):118–24.

    PubMed  Google Scholar 

  88. Montecucco F, Mach F, Lenglet S, Vonlaufen A, Gomes Quinderé AL, Pelli G, Burger F, Galan K, Dallegri F, Carbone F, Proudfoot AE. Treatment with Evasin-3 abrogates neutrophil-mediated inflammation in mouse acute pancreatitis. Eur J Clin Invest. 2014;44(10):940–50.

    CAS  PubMed  Google Scholar 

  89. Shields CJ, Winter DC, Redmond HP. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care. 2002;8(2):158–63.

    PubMed  Google Scholar 

  90. Elder AS, Saccone GT, Dixon DL. Lung injury in acute pancreatitis: mechanisms underlying augmented secondary injury. Pancreatology. 2012;12(1):49–56.

    PubMed  Google Scholar 

  91. Lee WL, Downey GP. Neutrophil activation and acute lung injury. Curr Opin Crit Care. 2001;7(1):1–7.

    CAS  PubMed  Google Scholar 

  92. Kuebler WM, Borges J, Sckell A, Kuhnle GE, Bergh K, Messmer K, Goetz AE. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med. 2000;161(1):36–43.

    CAS  PubMed  Google Scholar 

  93. Hartman H, Abdulla A, Awla D, Lindkvist B, Jeppsson B, Thorlacius H, Regnér S. P-selectin mediates neutrophil rolling and recruitment in acute pancreatitis. J Br Surg. 2012;99(2):246–55.

    CAS  Google Scholar 

  94. Doerschuk CM, Quinlan WM, Doyle NA, Bullard DC, Vestweber D, Jones ML, Takei F, Ward PA, Beaudet AL. The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice. J Immunol. 1996;157(10):4609–14.

    CAS  PubMed  Google Scholar 

  95. Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology. 2013;58(5):1814–23.

    CAS  PubMed  Google Scholar 

  96. Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23(4):243–52.

    PubMed  PubMed Central  Google Scholar 

  97. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, Nash GB, Chavakis T, Albelda SM, Rainger GE, Meda P. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu D, Zeng Y, Fan Y, Wu J, Mulatibieke T, Ni J, Yu G, Wan R, Wang X, Hu G. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci Rep. 2016;6(1):1–15.

    Google Scholar 

  99. Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O, Schmutz C, Stone PC, Salmon M, Matharu NM, Vohra RK, Nash GB. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol. 2006;79(2):303–11.

    CAS  PubMed  Google Scholar 

  100. Hoffmann JJ. Neutrophil CD64 as a sepsis biomarker. Biochem Med. 2011;21(3):282–90.

    CAS  Google Scholar 

  101. Isenmann R, Rau B, Beger H. Bacterial infection and extent of necrosis are determinants of organ failure in patients with acute necrotizing pancreatitis. Br J Surg. 1999;86(8):1020–4.

    CAS  PubMed  Google Scholar 

  102. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD. Neutrophils: new insights and open questions. Sci Immunol. 2018;3(30):eaat4579.

    PubMed  Google Scholar 

  103. Hidalgo A, Chilvers ER, Summers C, Koenderman L. The neutrophil life cycle. Trends Immunol. 2019;40(7):584–97.

    CAS  PubMed  Google Scholar 

  104. Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA. Programmed ‘disarming’of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol. 2020;21(2):135–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25.

    CAS  PubMed  Google Scholar 

  106. Wan J, Ren Y, Yang X, Li X, Xia L, Lu N. The role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Front Cell Dev Biol. 2021;8:565758.

    PubMed  PubMed Central  Google Scholar 

  107. Sorvillo N, Cherpokova D, Martinod K, Wagner DD. Extracellular DNA NET-works with dire consequences for health. Circ Res. 2019;125(4):470–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wong SL, Wagner DD. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):6358.

    CAS  PubMed Central  Google Scholar 

  109. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci. 2010;107(36):15880–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Papayannopoulos V, Staab D, Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS ONE. 2011;6(12):e28526.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, Gallant M, Mauler M, Cifuni SM, Wagner DD. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med. 2017;214(2):439–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Suzuki M, Ikari J, Anazawa R, Tanaka N, Katsumata Y, Shimada A, Suzuki E, Tatsumi K. PAD4 deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung. Am J Respir Cell Mol Biol. 2020;63(6):806–18.

    CAS  PubMed  Google Scholar 

  113. Tatsiy O, McDonald PP. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front Immunol. 2018;9:2036.

    PubMed  PubMed Central  Google Scholar 

  114. Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21(2):290–304.

    CAS  PubMed  Google Scholar 

  115. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol. 2012;92(4):841–9.

    CAS  PubMed  Google Scholar 

  116. Pang L, Hayes CP, Buac K, Yoo DG, Rada B. Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps. J Immunol. 2013;190(12):6488–500.

    CAS  PubMed  Google Scholar 

  117. Arai Y, Yamashita K, Mizugishi K, Watanabe T, Sakamoto S, Kitano T, Kondo T, Kawabata H, Kadowaki N, Takaori-Kondo A. Serum neutrophil extracellular trap levels predict thrombotic microangiopathy after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(12):1683–9.

    CAS  PubMed  Google Scholar 

  118. Hosseinzadeh A, Thompson PR, Segal BH, Urban CF. Nicotine induces neutrophil extracellular traps. J Leukoc Biol. 2016;100(5):1105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Haase H, Hebel S, Engelhardt G, Rink L. Ethylmercury and Hg2+ induce the formation of neutrophil extracellular traps (NETs) by human neutrophil granulocytes. Arch Toxicol. 2016;90(3):543–50.

    CAS  PubMed  Google Scholar 

  120. Kraaij T, Tengström FC, Kamerling SW, Pusey CD, Scherer HU, Toes RE, Rabelink TJ, van Kooten C, Teng YO. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev. 2016;15(6):577–84.

    CAS  PubMed  Google Scholar 

  121. Pieterse E, Jeremic I, Czegley C, Weidner D, Biermann MH, Veissi S, Maueröder C, Schauer C, Bilyy R, Dumych T, Hoffmann M. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci Rep. 2016;6(1):1–13.

    Google Scholar 

  122. Schorn C, Janko C, Krenn V, Zhao Y, Munoz LE, Schett G, Herrmann M. Bonding the foe–NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front Immunol. 2012;3:376.

    PubMed  PubMed Central  Google Scholar 

  123. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kusunoki Y, Nakazawa D, Shida H, Hattanda F, Miyoshi A, Masuda S, Nishio S, Tomaru U, Atsumi T, Ishizu A. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front Immunol. 2016;7:227.

    PubMed  PubMed Central  Google Scholar 

  125. Cuthbert AW. The cystic fibrosis transmembrane conductance regulator. Susceptibility to infectious diseases: the importance of host genetics. 2004;12(4).

  126. Hagiwara THY, Yamada M. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. Biochemistry. 2005;44(15):5827–34.

    CAS  PubMed  Google Scholar 

  127. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature. 2014;507(7490):104–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kenny EF, Herzig A, Krüger R, Muth A, Mondal S, Thompson PR, Brinkmann V, Bernuth HV, Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437.

    PubMed  PubMed Central  Google Scholar 

  129. Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 2013;4:38.

    PubMed  PubMed Central  Google Scholar 

  130. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, Baisch J, Phelps K, Clayton S, Gong M, Wright T. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213(5):697–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Erpenbeck L, Schön M. Neutrophil extracellular traps: protagonists of cancer progression? Oncogene. 2017;36(18):2483–90.

    CAS  PubMed  Google Scholar 

  133. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R, Galetti M, Belletti S, Cavagna L. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol. 2020;47(3):377–86.

    CAS  PubMed  Google Scholar 

  134. Odqvist L, Jevnikar Z, Riise R, Öberg L, Rhedin M, Leonard D, Yrlid L, Jackson S, Mattsson J, Nanda S, Cohen P. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019;78(10):1363–70.

    CAS  PubMed  Google Scholar 

  135. Smith CK, Kaplan MJ. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol. 2015;27(5):448–53.

    CAS  PubMed  Google Scholar 

  136. Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis. 2015;74(7):1417–24.

    CAS  PubMed  Google Scholar 

  137. Chen W, Wang Q, Ke Y, Lin J. Neutrophil function in an inflammatory milieu of rheumatoid arthritis. J Immunol Res. 2018. https://doi.org/10.1155/2018/8549329.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, Thompson P. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5:178ra40.

    PubMed  PubMed Central  Google Scholar 

  139. Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, Liu Y, Bicker KL, Wahamaa H, Hoffmann V, Catrina AI. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol. 2017;2(10):eaag3358.

    PubMed  PubMed Central  Google Scholar 

  140. Wigerblad G, Kaplan MJ. NETs spread ever wider in rheumatic diseases. Nat Rev Rheumatol. 2020;16(2):73–4.

    CAS  PubMed  Google Scholar 

  141. Spengler J, Lugonja B, Jimmy Ytterberg A, Zubarev RA, Creese AJ, Pearson MJ, Grant MM, Milward M, Lundberg K, Buckley CD, Filer A. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015;67(12):3135–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, Buhl EM, Boor P, Mulay SR, Anders HJ. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7(1):15003.

    PubMed  PubMed Central  Google Scholar 

  143. Lee J, Luria A, Rhodes C, Raghu H, Lingampalli N, Sharpe O, Rada B, Sohn DH, Robinson WH, Sokolove J. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis. Rheumatology. 2017;56(4):644–53.

    CAS  PubMed  Google Scholar 

  144. Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS ONE. 2011;6(12):e29318.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M. Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Skrzeczynska-Moncznik J, Wlodarczyk A, Zabieglo K, Kapinska-Mrowiecka M, Marewicz E, Dubin A, Potempa J, Cichy J. Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells: implication for psoriasis. J Immunol. 2012;189(4):1611–7.

    CAS  PubMed  Google Scholar 

  147. Hirota T, Levy JH, Iba T. The influence of hyperglycemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. Microcirculation. 2020;27(5):e12617.

    CAS  PubMed  Google Scholar 

  148. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu D, Yang P, Gao M, Yu T, Shi Y, Zhang M, Yao M, Liu Y, Zhang X. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci. 2019;133(4):565–82.

    CAS  Google Scholar 

  150. D’Abbondanza M, Martorelli EE, Ricci MA, De Vuono S, Migliola EN, Godino C, Corradetti S, Siepi D, Paganelli MT, Maugeri N, Lupattelli G. Increased plasmatic NETs by-products in patients in severe obesity. Sci Rep. 2019;9(1):1–10.

    Google Scholar 

  151. Moorthy AN, Tan KB, Wang S, Narasaraju T, Chow VT. Effect of high-fat diet on the formation of pulmonary neutrophil extracellular traps during influenza pneumonia in BALB/c mice. Front Immunol. 2016;7:289.

    PubMed  PubMed Central  Google Scholar 

  152. Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renström E, Luo L, Mörgelin M, Regner S, Thorlacius H. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149(7):1920–31.

    CAS  PubMed  Google Scholar 

  153. Gukovskaya AS, Pandol SJ, Gukovsky I. New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol. 2016;32(5):429.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE. 2012;7(2):e32366.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Szatmary P, Liu T, Abrams ST, Voronina S, Wen L, Chvanov M, Huang W, Wang G, Criddle DN, Tepikin AV, Toh CH. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology. 2017;17(6):884–92.

    CAS  PubMed  Google Scholar 

  156. Leppkes M, Maueröder C, Hirth S, Nowecki S, Günther C, Billmeier U, Paulus S, Biermann M, Munoz LE, Hoffmann M, Wildner D. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun. 2016;7(1):10973.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Tokoro T, Makino I, Harada S, Okamoto K, Nakanuma S, Sakai S, Kinoshita J, Nakamura K, Miyashita T, Tajima H, Ninomiya I. Interactions between neutrophils and platelets in the progression of acute pancreatitis. Pancreas. 2020;49(6):830–6.

    CAS  PubMed  Google Scholar 

  158. Qiang X, Yang W-L, Wu R, Zhou M, Jacob A, Dong W, Kuncewitch M, Ji Y, Yang H, Wang H, Fujita J. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med. 2013;19(11):1489–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Aziz M, Brenner M, Wang P. Extracellular CIRP (eCIRP) and inflammation. J Leukoc Biol. 2019;106(1):133–46.

    CAS  PubMed  Google Scholar 

  160. Linders J, Madhi R, Rahman M, Mörgelin M, Regner S, Brenner M, Wang P, Thorlacius H. Extracellular cold-inducible RNA-binding protein regulates neutrophil extracellular trap formation and tissue damage in acute pancreatitis. Lab Invest. 2020;100(12):1618–30.

    CAS  PubMed  Google Scholar 

  161. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, Vyas SN, FitzGerald GA. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med. 2001;345(25):1809–17.

    CAS  PubMed  Google Scholar 

  162. Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, D’Atri LP, Gómez RM, Schattner M. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–62.

    CAS  PubMed  Google Scholar 

  163. Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38.

    PubMed  PubMed Central  Google Scholar 

  164. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9.

    CAS  PubMed  Google Scholar 

  165. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lapponi MJ, Carestia A, Landoni VI, Rivadeneyra L, Etulain J, Negrotto S, Pozner RG, Schattner M. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther. 2013;345(3):430–7.

    CAS  PubMed  Google Scholar 

  167. Bystrzycka W, Manda-Handzlik A, Sieczkowska S, Moskalik A, Demkow U, Ciepiela O. Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int J Mol Sci. 2017;18(12):2666.

    PubMed  PubMed Central  Google Scholar 

  168. Dahlbäck BR, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol. 2005;25(7):1311–20.

    PubMed  Google Scholar 

  169. Howard BM, Cohen MJ. Activated protein C. In: Trauma induced coagulopathy. Springer; 2016. p. 91–114.

    Google Scholar 

  170. Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood. 2007;109(8):3161–72.

    CAS  PubMed  Google Scholar 

  171. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. Blood. 2015;125(19):2898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem. 2017;292(21):8616–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wildhagen KC, García de Frutos P, Reutelingsperger CP, Schrijver R, Aresté C, Ortega-Gómez A, Deckers NM, Hemker HC, Soehnlein O, Nicolaes GA. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood. 2014;123(7):1098–101.

    CAS  PubMed  Google Scholar 

  174. Iba T, Hashiguchi N, Nagaoka I, Tabe Y, Kadota K, Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med Exp. 2015;3(1):1–11.

    Google Scholar 

  175. Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res. 2017;123:146–56.

    CAS  PubMed  Google Scholar 

  176. Menegazzo L, Scattolini V, Cappellari R, Bonora BM, Albiero M, Bortolozzi M, Romanato F, Ceolotto G, Vigili de Kreutzeberg S, Avogaro A, Fadini GP. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55(6):593–601.

    CAS  PubMed  Google Scholar 

  177. Gallo A, Ceolotto G, Pinton P, Iori E, Murphy E, Rutter GA, Rizzuto R, Semplicini A, Avogaro A. Metformin prevents glucose-induced protein kinase C-β2 activation in human umbilical vein endothelial cells through an antioxidant mechanism. Diabetes. 2005;54(4):1123–31.

    CAS  PubMed  Google Scholar 

  178. Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD (P) H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232(1):156–64.

    CAS  PubMed  Google Scholar 

  179. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci. 1990;87(23):9188–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Meng W, Paunel-Görgülü A, Flohé S, Witte I, Schädel-Höpfner M, Windolf J, Lögters TT. Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediators Inflamm. 2012. https://doi.org/10.1155/2012/149560.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gray RD, McCullagh BN, McCray PB Jr. NETs and CF lung disease: current status and future prospects. Antibiotics. 2015;4(1):62–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Mohanty T, Sjögren J, Kahn F, Abu-Humaidan AH, Fisker N, Assing K, Mörgelin M, Bengtsson AA, Borregaard N, Sørensen OE. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood. 2015;126(18):2128–37.

    CAS  PubMed  Google Scholar 

  183. Witalison E, Thompson R, Hofseth J. Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets. 2015;16(7):700–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, Hodgin JB, Thompson PR, Kaplan MJ. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. 2015;74(12):2199–206.

    CAS  PubMed  Google Scholar 

  185. Madhi R, Rahman M, Taha D, Mörgelin M, Thorlacius H. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Cell Physiol. 2019;234(7):11850–60.

    CAS  PubMed  Google Scholar 

  186. Murthy P, Singhi AD, Ross MA, Loughran P, Paragomi P, Papachristou GI, Whitcomb DC, Zureikat AH, Lotze MT, Zeh HJ III, Boone BA. Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol. 2019;10:28.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, Singhi AD, Kang R, Tang D, Lotze MT, Zeh HJ. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015;22(6):326–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu Z, Lu G, Zhang L, Ke L, Yuan C, Ma N, Yu X, Guo X, Zhao W, Wang Y, Hu S. Protectin D1 decreases pancreatitis severity in mice by inhibiting neutrophil extracellular trap formation. Int Immunopharmacol. 2021;94:107486.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support provided by the National Institute of Health-NIDDK and Sylvester Comprehensive Cancer Centre.

Funding

HMI was supported by the National Institute of Health-NIDDK R01DK093047. RD was supported by the National Institute of Health-NIDDK R01DK093047 and Sylvester Comprehensive Cancer Centre.

Author information

Authors and Affiliations

Authors

Contributions

HMI and MA reviewed the literature and wrote the manuscript. RD conceptualized, reviewed, edited and wrote a part of the manuscript.

Corresponding author

Correspondence to Rajinder Dawra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishqi, H.M., Ali, M. & Dawra, R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 23, 4107–4122 (2023). https://doi.org/10.1007/s10238-023-01180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01180-4

Keywords

Navigation