Skip to main content

Advertisement

Log in

CXCL6: A potential therapeutic target for inflammation and cancer

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

A Correction to this article was published on 26 October 2023

This article has been updated

Abstract

Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability and materials

Not applicable.

Change history

Abbreviations

TME:

Tumor microenvironment

GCP-2:

Granulocyte chemoattractant protein-2

EMT:

Epithelial mesenchymal transformation

HCC:

Hepatocellular carcinoma

PTX:

Pertussis toxin

ACKR:

Atypical chemokine receptors

ELR:

Glutamic acid–leucine–arginine

RA:

Rheumatoid arthritis

NETs:

Neutrophil extracellular traps

FLSs:

Fibroblast-like synoviocytes

FLS-OA:

Osteoarthritic fibroblast-like synoviocytes

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor-α

CAP1:

Cyclase-associated protein 1

HDAC:

Histone deacetylase

IL-1β:

Interleukin-1β

DN:

Diabetes nephropathy

AKI:

Acute renal injury

ARPCs:

Adult renal progenitor cells

PPARα:

Peroxisome proliferator-activated receptor α

HRSV:

Human respiratory syncytial virus

PITX2:

Paired-like homeodomain transcription factor 2

GC:

Glucocorticoid

IBD:

Inflammatory bowel disease

AD:

Atopic dermatitis

T1R:

Type 1 response

BPH:

Benign prostatic hyperplasia

TSPAN12:

Tetraspanin 12

RNF152:

Ring finger protein 152

PAI-1:

Plasminogen activator inhibitor-1

CLCF1:

Cardiotrophin-like cytokine factor 1

CAF:

Cancer-associated fibroblasts

NSCLC:

Non-small cell lung cancer

Th17:

T cell helper 17

AML:

Acute myeloid leukemia

VEGF:

Vascular endothelial growth factor

TAM:

Tumor-associated macrophages

ESCC:

Esophageal squamous cell carcinoma

PD-L1:

Programmed cell death ligand 1

HIF-α:

Hypoxia-inducible factor-1α

TANs:

Tumor-associated neutrophils

BRD7:

Bromodomain-containing protein 7

SSc:

Systemic sclerosis

HUVECs:

Human umbilical vein endothelial cells

Fli1:

Friend leukemia virus integration 1

HGF:

Hepatocyte growth factor

References

  1. Vandercappellen J, Noppen S, Verbeke H, et al. Stimulation of angiostatic platelet factor-4 variant (CXCL4L1/PF-4var) versus inhibition of angiogenic granulocyte chemotactic protein-2 (CXCL6/GCP-2) in normal and tumoral mesenchymal cells. J Leukoc Biol. 2007;826:1519–30.

    Google Scholar 

  2. Matter MS, Marquardt JU, Andersen JB, et al. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype. Hepatology. 2016;636:1888–99.

    Google Scholar 

  3. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;4206917:860–7.

    Google Scholar 

  4. Mantovani A. Cancer: Inflaming metastasis. Nature. 2009;4577225:36–7.

    Google Scholar 

  5. Wuyts A, Struyf S, Gijsbers K, et al. The CXC chemokine GCP-2/CXCL6 is predominantly induced in mesenchymal cells by interleukin-1beta and is down-regulated by interferon-gamma: comparison with interleukin-8/CXCL8. Lab Invest. 2003;831:23–34.

    Google Scholar 

  6. Norlander AE, Saleh MA, Madhur MS. CXCL16: a chemokine-causing chronic kidney disease. Hypertension. 2013;626:1008–10.

    Google Scholar 

  7. B. J Rollins Chemokines Blood. 1997;903:909–28.

    Google Scholar 

  8. Premack BA, Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med. 1996;211:1174–8.

    Google Scholar 

  9. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.

    CAS  PubMed  Google Scholar 

  10. Bonecchi R, Graham GJ. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 2016;7:224.

    PubMed  PubMed Central  Google Scholar 

  11. Mu L, Hu S, Li G, et al. Characterization of the prognostic values of CXCL family in Epstein–Barr virus associated gastric cancer. Oxid Med Cell Longev. 2022;2022:2218140.

    PubMed  PubMed Central  Google Scholar 

  12. Proost P, De Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, Van Damme J. Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO, IP-10, and IL-8. J Immunol. 1993;1503:1000–10.

    Google Scholar 

  13. Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;3387:436–45.

    Google Scholar 

  14. Verbeke H, Struyf S, Berghmans N, et al. Isotypic neutralizing antibodies against mouse GCP-2/CXCL6 inhibit melanoma growth and metastasis. Cancer Lett. 2011;3021:54–62.

    Google Scholar 

  15. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal. 2019;54:69–80.

    CAS  PubMed  Google Scholar 

  16. Madalli S, Beyrau M, Whiteford J, et al. Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states. Biol Sex Differ. 2015;6:27.

    PubMed  PubMed Central  Google Scholar 

  17. Li MY, Zhao Y, Luo YB, Li YH, Liu Y. The effect and mechanism of transient receptor potential M(2) in antigen-induced arthritis mice. Zhonghua Nei Ke Za Zhi. 2019;5812:911–4.

    Google Scholar 

  18. Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-driven secretion potential is upregulated in osteoarthritic fibroblast-like synoviocytes. Int J Mol Sci. 2022;23(19):11817.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato H, Muraoka S, Kusunoki N, et al. Resistin upregulates chemokine production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther. 2017;191:263.

    Google Scholar 

  20. Choo QY, Ho PC, Tanaka Y, Lin HS. The histone deacetylase inhibitors MS-275 and SAHA suppress the p38 mitogen-activated protein kinase signaling pathway and chemotaxis in rheumatoid arthritic synovial fibroblastic E11 cells. Molecules. 2013;1811:14085–95.

    Google Scholar 

  21. Angiolilli C, Kabala PA, Grabiec AM, et al. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res Ther. 2018;201:148.

    Google Scholar 

  22. Sun MY, Wang SJ, Li XQ, et al. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway. Front Pharmacol. 2019;10:224.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang SZ, Zhang YL, Shi HB. Potential repressive impact of microRNA-20a on renal tubular damage in diabetic kidney disease by targeting C-X-C motif chemokine ligand 6. Arch Med Res. 2021;521:58–68.

    Google Scholar 

  24. Sallustio F, Stasi A, Curci C, et al. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides. Faseb j. 2019;3310:10753–66.

    Google Scholar 

  25. Jiang Y, Xi Y, Li Y, et al. Ethanol promoting the upregulation of C-X-C Motif Chemokine Ligand 1 (CXCL1) and C-X-C Motif Chemokine Ligand 6 (CXCL6) in models of early alcoholic liver disease. Bioengineered. 2022;133:4688–701.

    Google Scholar 

  26. Janssen AW, Betzel B, Stoopen G, et al. The impact of PPARα activation on whole genome gene expression in human precision cut liver slices. BMC Genomics. 2015;16:760.

    PubMed  PubMed Central  Google Scholar 

  27. Wang H, Chavali S, Mobini R, et al. A pathway-based approach to find novel markers of local glucocorticoid treatment in intermittent allergic rhinitis. Allergy. 2011;661:132–40.

    Google Scholar 

  28. Bao L, Shi VY, Chan LS. IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: relevant in the pathogenesis of atopic dermatitis. Cytokine. 2013;612:419–25.

    Google Scholar 

  29. Girolomoni G, Mrowietz U, Paul C. Psoriasis: rationale for targeting interleukin-17. Br J Dermatol. 2012;1674:717–24.

    Google Scholar 

  30. Fang S, Xu X, Zhong L, et al. Bioinformatics-based study to identify immune infiltration and inflammatory-related hub genes as biomarkers for the treatment of rheumatoid arthritis. Immunogenetics. 2021;736:435–48.

    Google Scholar 

  31. Weissmann G, Korchak H. Rheumatoid arthritis. The role of neutrophil activation. Inflammation. 1984;8(Suppl):S3-14.

    CAS  PubMed  Google Scholar 

  32. Demoruelle MK, Harrall KK, Ho L, et al. Anti-citrullinated protein antibodies are associated with neutrophil extracellular traps in the sputum in relatives of rheumatoid arthritis patients. Arthritis Rheumatol. 2017;696:1165–75.

    Google Scholar 

  33. Chen W, Wang Q, Ke Y, Lin J. Neutrophil function in an inflammatory milieu of rheumatoid arthritis. J Immunol Res. 2018;2018:8549329.

    PubMed  PubMed Central  Google Scholar 

  34. Appelgren D, Enocsson H, Skogman BH, et al. Neutrophil extracellular traps (NETs) in the cerebrospinal fluid samples from children and adults with central nervous system Infections. Cells. 2019;9(1):43.

    PubMed  PubMed Central  Google Scholar 

  35. Jovic S, Linge HM, Shikhagaie MM, et al. The neutrophil-recruiting chemokine GCP-2/CXCL6 is expressed in cystic fibrosis airways and retains its functional properties after binding to extracellular DNA. Mucosal Immunol. 2016;91:112–23.

    Google Scholar 

  36. Linge HM, Collin M, Nordenfelt P, Mörgelin M, Malmsten M, Egesten A. The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob Agents Chemother. 2008;527:2599–607.

    Google Scholar 

  37. Hulander E, Bärebring L, Turesson Wadell A, et al. Proposed anti-inflammatory diet reduces inflammation in compliant, weight-stable patients with rheumatoid arthritis in a randomized controlled crossover trial. J Nutr. 2021;15112:3856–64.

    Google Scholar 

  38. Petra H, Eva H, Irena B, Petra H, Ondřej V. Molecular profiling of acute and chronic rejections of renal allografts. Clin Dev Immunol. 2013;2013:509259.

    PubMed  PubMed Central  Google Scholar 

  39. Shen YL, Jiang YP, Li XQ, et al. ErHuang formula improves renal fibrosis in diabetic nephropathy rats by inhibiting CXCL6/JAK/STAT3 signaling pathway. Front Pharmacol. 2019;10:1596.

    CAS  PubMed  Google Scholar 

  40. Krupickova L, Fialova M, Novotny M, et al. Chemokine profiles are affected in serum of patients with acute rejection of kidney allograft. Mediators Inflamm. 2021;2021:5513690.

    PubMed  PubMed Central  Google Scholar 

  41. Zeng M, Liu J, Yang W, et al. Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. J Cell Physiol. 2019;234:16447–62.

    CAS  PubMed  Google Scholar 

  42. Wang X, Li J, Wang Z, Deng A. Wound exudate CXCL6: a potential biomarker for wound healing of diabetic foot ulcers. Biomark Med. 2019;133:167–74.

    Google Scholar 

  43. Sehrawat TS, Liu M, Shah VH. The knowns and unknowns of treatment for alcoholic hepatitis. Lancet Gastroenterol Hepatol. 2020;55:494–506.

    Google Scholar 

  44. Liu M, Cao S, He L, et al. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat Commun. 2021;121:4560.

    Google Scholar 

  45. Dominguez M, Miquel R, Colmenero J, et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology. 2009;1365:1639–50.

    Google Scholar 

  46. Chen M, Xing J, Pan D, Peng X, Gao P. Chinese herbal medicine mixture 919 syrup alleviates nonalcoholic fatty liver disease in rats by inhibiting the NF-κB pathway. Biomed Pharmacother. 2020;128:110286.

    CAS  PubMed  Google Scholar 

  47. Xu MY, Qu Y, Li Z, Li F, Xiao CY, Lu LG. A 6 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis B. Front Biosci (Landmark Ed). 2016;213:479–86.

    Google Scholar 

  48. Aregay A, Engel B, Port K, et al. Distinct immune imprints of post-liver transplantation hepatitis C persist despite viral clearance. Liver Transpl. 2021;276:887–99.

    Google Scholar 

  49. Sachse F, Ahlers F, Stoll W, Rudack C. Neutrophil chemokines in epithelial inflammatory processes of human tonsils. Clin Exp Immunol. 2005;1402:293–300.

    Google Scholar 

  50. Jang Y, Seo SH. Gene expression pattern differences in primary human pulmonary epithelial cells infected with MERS-CoV or SARS-CoV-2. Arch Virol. 2020;16510:2205–11.

    Google Scholar 

  51. Touzelet O, Broadbent L, Armstrong SD, et al. The secretome profiling of a pediatric airway epithelium infected with hRSV identified aberrant apical/basolateral trafficking and novel immune modulating (CXCL6, CXCL16, CSF3) and antiviral (CEACAM1) proteins. Mol Cell Proteomics. 2020;195:793–807.

    Google Scholar 

  52. Moazzeni H, Akbari MT, Yazdani S, Elahi E. Expression of CXCL6 and BBS5 that may be glaucoma relevant genes is regulated by PITX2. Gene. 2016;5931:76–83.

    Google Scholar 

  53. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;323:169–84.

    Google Scholar 

  54. Xu L, Duda DG, di Tomaso E, et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res. 2009;6920:7905–10.

    Google Scholar 

  55. Holmgren K, Jonsson P, Lundin C, et al. Preoperative biomarkers related to inflammation may identify high-risk anastomoses in colorectal cancer surgery: explorative study. BJS Open. 2022. https://doi.org/10.1093/bjsopen/zrac072.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gijsbers K, Van Assche G, Joossens S, et al. CXCR1-binding chemokines in inflammatory bowel diseases: down-regulated IL-8/CXCL8 production by leukocytes in Crohn’s disease and selective GCP-2/CXCL6 expression in inflamed intestinal tissue. Eur J Immunol. 2004;347:1992–2000.

    Google Scholar 

  57. Boshagh MA, Foroutan P, Moloudi MR, et al. ELR positive CXCL chemokines are highly expressed in an animal model of ulcerative colitis. J Inflamm Res. 2019;12:167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Khaiboullina SF, Abdulkhakov S, Khalikova A, et al. Serum cytokine signature that discriminates helicobacter pylori positive and negative juvenile gastroduodenitis. Front Microbiol. 2016;7:1916.

    PubMed  PubMed Central  Google Scholar 

  59. Kerami Z, Duijvis NW, Vogels EW, van Dooren FH, Moerland PD, Te Velde AA. Effect of interleukin-17 on gene expression profile of fibroblasts from Crohn’s disease patients. J Crohns Colitis. 2014;810:1208–16.

    Google Scholar 

  60. Alzoghaibi MA, Al-Mofleh IA, Al-Jebreen AM. Neutrophil chemokines GCP-2 and GRO-alpha in patients with inflammatory bowel disease. J Dig Dis. 2008;93:144–8.

    Google Scholar 

  61. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;2134(Suppl):S29-52.

    Google Scholar 

  62. Mittal P, Romero R, Kusanovic JP, et al. CXCL6 (granulocyte chemotactic protein-2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008;603:246–57.

    Google Scholar 

  63. Grad S, Bow C, Karppinen J, et al. Systemic blood plasma CCL5 and CXCL6: potential biomarkers for human lumbar disc degeneration. Eur Cell Mater. 2016;31:1–10.

    CAS  PubMed  Google Scholar 

  64. Plemmenos G, Evangeliou E, Polizogopoulos N, Chalazias A, Deligianni M, Piperi C. Central regulatory role of cytokines in periodontitis and targeting options. Curr Med Chem. 2021;2815:3032–58.

    Google Scholar 

  65. Kebschull M, Demmer R, Behle JH, et al. Granulocyte chemotactic protein 2 (gcp-2/cxcl6) complements interleukin-8 in periodontal disease. J Periodontal Res. 2009;444:465–71.

    Google Scholar 

  66. Yücel Ç, Fırat Oğuz E, Er S, Balamir İ, Turhan T, Tez M. Diagnostic value of GCP-2/CXCL-6 and hs-CRP in the diagnosis of acute appendicitis. Ulus Travma Acil Cerrahi Derg. 2020;262:191–6.

    Google Scholar 

  67. Hasegawa M, Higashi K, Matsushita T, et al. Dermokine inhibits ELR(+)CXC chemokine expression and delays early skin wound healing. J Dermatol Sci. 2013;701:34–41.

    Google Scholar 

  68. Traves SL, Donnelly LE. Th17 cells in airway diseases. Curr Mol Med. 2008;85:416–26.

    Google Scholar 

  69. Saini C, Srivastava RK, Kumar P, Ramesh V, Sharma A. A distinct double positive IL-17A(+)/F(+) T helper 17 cells induced inflammation leads to IL17 producing neutrophils in Type 1 reaction of leprosy patients. Cytokine. 2020;126:154873.

    CAS  PubMed  Google Scholar 

  70. Vistejnova L, Safrankova B, Nesporova K, et al. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response. Cytokine. 2014;702:97–103.

    Google Scholar 

  71. Begley LA, Kasina S, MacDonald J, Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine. 2008;432:194–9.

    Google Scholar 

  72. Dong Y, Liu J, Xue Z, et al. Pao Pereira extract suppresses benign prostatic hyperplasia by inhibiting inflammation-associated NFκB signaling. BMC Complement Med Ther. 2020;201:150.

    Google Scholar 

  73. Bernichtein S, Pigat N, Camparo P, et al. Anti-inflammatory properties of Lipidosterolic extract of Serenoa repens (Permixon®) in a mouse model of prostate hyperplasia. Prostate. 2015;757:706–22.

    Google Scholar 

  74. Huth L, Marquardt Y, Heise R, et al. Bifonazole exerts anti-inflammatory effects in human three-dimensional skin equivalents after UVB or histamine challenge. Skin Pharmacol Physiol. 2019;326:337–43.

    Google Scholar 

  75. Laplane L, Duluc D, Larmonier N, Pradeu T, Bikfalvi A. The multiple layers of the tumor environment. Trends Cancer. 2018;412:802–9.

    Google Scholar 

  76. Song M, He J, Pan QZ, et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 2021;735:1717–35.

    Google Scholar 

  77. Zheng S, Shen T, Liu Q, et al. CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vivo through upregulation of PD-L1 via activation of STAT3 pathway. J Cell Physiol. 2021;2367:5373–86.

    Google Scholar 

  78. Li J, Tang Z, Wang H, et al. CXCL6 promotes non-small cell lung cancer cell survival and metastasis via down-regulation of miR-515-5p. Biomed Pharmacother. 2018;97:1182–8.

    CAS  PubMed  Google Scholar 

  79. Li L, Man J, Zhao L. Hypoxia-CXCL6 axis affects arteriolar niche remodeling in acute myeloid leukemia. Exp Biol Med. 2021;2461:84–96.

    Google Scholar 

  80. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med. 2013;21010:2057–69.

    Google Scholar 

  81. Yeudall WA, Vaughan CA, Miyazaki H, et al. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis. 2012;332:442–51.

    Google Scholar 

  82. Otomo R, Otsubo C, Matsushima-Hibiya Y, et al. TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion. Proc Natl Acad Sci U S A. 2014;11152:18691–6.

    Google Scholar 

  83. Wan J, Liu S, Sun W, et al. Ring finger protein 152-dependent degradation of TSPAN12 suppresses hepatocellular carcinoma progression. Cancer Cell Int. 2021;211:122.

    Google Scholar 

  84. Liu G, An L, Zhang H, Du P, Sheng Y. Activation of CXCL6/CXCR1/2 axis promotes the growth and metastasis of osteosarcoma cells in vitro and in vivo. Front Pharmacol. 2019;10:307.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tiwari N, Marudamuthu AS, Tsukasaki Y, Ikebe M, Fu J, Shetty S. p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol. 2016;3106:L496-506.

    Google Scholar 

  86. Vicent S, Sayles LC, Vaka D, et al. Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 2012;7222:5744–56.

    Google Scholar 

  87. Lei MML, Lee TKW. Cancer-associated fibroblasts: orchestrating the crosstalk between liver cancer cells and neutrophils through the cardiotrophin-like cytokine factor 1-mediated chemokine (C-X-C motif) ligand 6/TGF-β axis. Hepatology. 2021;735:1631–3.

    Google Scholar 

  88. Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005;1759:6177–89.

    Google Scholar 

  89. Zhang M, Wang G, Tao Y, Zhang H. The proinflammatory effect and molecular mechanism of IL- 17 in the intestinal epithelial cell line HT-29. J buon. 2015;201:120–7.

    Google Scholar 

  90. Shan ZG, Chen J, Liu JS, et al. Activated neutrophils polarize protumorigenic interleukin-17A-producing T helper subsets through TNF-α-B7-H2-dependent pathway in human gastric cancer. Clin Transl Med. 2021;116:e484.

    Google Scholar 

  91. Sivanathan KN, Rojas-Canales D, Grey ST, Gronthos S, Coates PT. Transcriptome profiling of IL-17A preactivated mesenchymal stem cells: a comparative study to unmodified and IFN-γ modified mesenchymal stem cells. Stem Cells Int. 2017;2017:1025820.

    PubMed  PubMed Central  Google Scholar 

  92. Liu L, Sun H, Wu S, et al. IL-17A promotes CXCR2-dependent angiogenesis in a mouse model of liver cancer. Mol Med Rep. 2019;202:1065–74.

    Google Scholar 

  93. Zhu YM, Bagstaff SM, Woll PJ. Production and upregulation of granulocyte chemotactic protein-2/CXCL6 by IL-1beta and hypoxia in small cell lung cancer. Br J Cancer. 2006;9412:1936–41.

    Google Scholar 

  94. Ferretti E, Di Carlo E, Cocco C, et al. Direct inhibition of human acute myeloid leukemia cell growth by IL-12. Immunol Lett. 2010;1332:99–105.

    Google Scholar 

  95. Wang YH, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007;2048:1837–47.

    Google Scholar 

  96. Ferretti E, Di Carlo E, Ognio E, et al. IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin Lymphoma by curtailing neoangiogenesis. Oncoimmunology. 2018;73:e1397249.

    Google Scholar 

  97. Corrigan CJ, Wang W, Meng Q, et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci U S A. 2011;1084:1579–84.

    Google Scholar 

  98. Wang W, Fan YQ, Lv Z, et al. Interleukin-25 promotes basic fibroblast growth factor expression by human endothelial cells through interaction with IL-17RB, but not IL-17RA. Clin Exp Allergy. 2012;4211:1604–14.

    Google Scholar 

  99. Li Y, Flores R, Yu A, et al. Elevated expression of CXC chemokines in pediatric osteosarcoma patients. Cancer. 2011;1171:207–17.

    Google Scholar 

  100. Wang N, Feng Y, Wang Q, et al. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS ONE. 2014;92:e89991.

    Google Scholar 

  101. Korbecki J, Kojder K, Kapczuk P, et al. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors—a review of literature. Int J Mol Sci. 2021;22(2):843.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen Q, Liu D, Hu Z, Luo C, Zheng SL. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6. Onco Targets Ther. 2019;12:835–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao M, Dong G, Meng Q, Lin S, Li X. Circ-HOMER1 enhances the inhibition of miR-1322 on CXCL6 to regulate the growth and aggressiveness of hepatocellular carcinoma cells. J Cell Biochem. 2020;12111:4440–9.

    Google Scholar 

  104. Shen W, Xie XY, Liu MR, Wang LL. MicroRNA-101-5p inhibits the growth and metastasis of cervical cancer cell by inhibiting CXCL6. Eur Rev Med Pharmacol Sci. 2019;235:1957–68.

    Google Scholar 

  105. Sun C, Li G, Liu M. A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways. Onco Targets Ther. 2020;13:6171–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Walterskirchen N, Müller C, Ramos C, et al. Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett. 2022;540:215737.

    CAS  PubMed  Google Scholar 

  107. Guil-Luna S, Mena R, Navarrete-Sirvent C, et al. Association of tumor budding with immune evasion pathways in primary colorectal cancer and patient-derived xenografts. Front Med. 2020;7:264.

    Google Scholar 

  108. Tian H, Huang P, Zhao Z, Tang W, Xia J. HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell Physiol Biochem. 2014;345:1536–46.

    Google Scholar 

  109. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;6810:3645–54.

    Google Scholar 

  110. Ma JC, Sun XW, Su H, et al. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer. World J Gastroenterol. 2017;2328:5167–78.

    Google Scholar 

  111. Zhang C, Tang B, Hu J, et al. Neutrophils correlate with hypoxia microenvironment and promote progression of non-small-cell lung cancer. Bioengineered. 2021;121:8872–84.

    Google Scholar 

  112. Rodrigues FS, Ciccarelli FD, Malanchi I. Reflected stemness as a potential driver of the tumour microenvironment. Trends Cell Biol. 2022;32:979–87.

    CAS  PubMed  Google Scholar 

  113. Bian J, Fu J, Wang X, et al. Characterization of immunogenicity of malignant cells with stemness in intrahepatic cholangiocarcinoma by single-cell RNA sequencing. Stem Cells Int. 2022;2022:3558200.

    PubMed  PubMed Central  Google Scholar 

  114. Gijsbers K, Gouwy M, Struyf S, et al. GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp Cell Res. 2005;3032:331–42.

    Google Scholar 

  115. Karagiannis GS, Saraon P, Jarvi KA, Diamandis EP. Proteomic signatures of angiogenesis in androgen-independent prostate cancer. Prostate. 2014;743:260–72.

    Google Scholar 

  116. Mohammadi Najafabadi M, Shamsasenjan K, Akbarzadehlaleh P. The angiogenic chemokines expression profile of myeloid cell lines co-cultured with bone marrow-derived mesenchymal stem cells. Cell J. 2018;201:19–24.

    Google Scholar 

  117. Burrows AE, Smogorzewska A, Elledge SJ. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci U S A. 2010;10732:14280–5.

    Google Scholar 

  118. van Beijnum JR, Nowak-Sliwinska P, van Berkel M, Wong TJ, Griffioen AW. A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7). Angiogenesis. 2017;204:641–54.

    Google Scholar 

  119. Tsou PS, Rabquer BJ, Ohara RA, et al. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines. Rheumatology. 2016;554:745–54.

    Google Scholar 

  120. Lin ZY, Chuang WL. Pharmacologic concentrations of melatonin have diverse influence on differential expressions of angiogenic chemokine genes in different hepatocellular carcinoma cell lines. Biomed Pharmacother. 2010;6410:659–62.

    Google Scholar 

  121. Park SY, Jang WJ, Yi EY, et al. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res. 2010;482:178–84.

    Google Scholar 

  122. González-González A, González A, Rueda N, et al. Usefulness of melatonin as complementary to chemotherapeutic agents at different stages of the angiogenic process. Sci Rep. 2020;101:4790.

    Google Scholar 

  123. González-González A, González A, Rueda N, et al. Melatonin enhances the usefulness of ionizing radiation: involving the regulation of different steps of the angiogenic process. Front Physiol. 2019;10:879.

    PubMed  PubMed Central  Google Scholar 

  124. Wang X, Dai Y, Zhang X, et al. CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation. Cancer Biol Ther. 2021;221:30–9.

    Google Scholar 

  125. Asselah T, Bièche I, Laurendeau I, et al. Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology. 2005;1296:2064–75.

    Google Scholar 

  126. Besnard AG, Struyf S, Guabiraba R, et al. CXCL6 antibody neutralization prevents lung inflammation and fibrosis in mice in the bleomycin model. J Leukoc Biol. 2013;946:1317–23.

    Google Scholar 

  127. Taniguchi T, Asano Y, Nakamura K, et al. Fli1 Deficiency induces CXCL6 expression in dermal fibroblasts and endothelial cells, contributing to the development of fibrosis and vasculopathy in systemic sclerosis. J Rheumatol. 2017;448:1198–205.

    Google Scholar 

  128. Cai X, Li Z, Zhang Q, et al. CXCL6-EGFR-induced Kupffer cells secrete TGF-β1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis. J Cell Mol Med. 2018;2210:5050–61.

    Google Scholar 

  129. Wu C, Cheng D, Peng Y, et al. Hepatic BRD4 Is upregulated in liver fibrosis of various etiologies and positively correlated to fibrotic severity. Front Med. 2021;8:683506.

    Google Scholar 

  130. Sherwood J, Bertrand J, Nalesso G, et al. A homeostatic function of CXCR2 signalling in articular cartilage. Ann Rheum Dis. 2015;7412:2207–15.

    Google Scholar 

  131. Kawata K, Koga H, Tsuji K, et al. Extracellular vesicles derived from mesenchymal stromal cells mediate endogenous cell growth and migration via the CXCL5 and CXCL6/CXCR2 axes and repair menisci. Stem Cell Res Ther. 2021;121:414.

    Google Scholar 

  132. Min Y, Han S, Aae Ryu H, Kim SW. Human adipose mesenchymal stem cells overexpressing dual chemotactic gene showed enhanced angiogenic capacity in ischaemic hindlimb model. Cardiovasc Res. 2018;11410:1400–9.

    Google Scholar 

  133. Kim SW, Lee DW, Yu LH, et al. Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res. 2012;954:495–506.

    Google Scholar 

  134. Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity. 2021;545:859–74.

    Google Scholar 

  135. Tang KH, Li S, Khodadadi-Jamayran A, et al. Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC. Cancer Discov. 2022;121:47–61.

    Google Scholar 

  136. Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123 A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;1919:1001–11.

    Google Scholar 

  137. O’Byrne PM, Metev H, Puu M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;410:797–806.

    Google Scholar 

Download references

Acknowledgements

We are indebted to all individuals who participated in or helped with this research project.

Funding

This work was supported by funds from the National Natural Science Foundation of China (No. 82174023) and the Three-Year Action Plan for Shanghai TCM Development and Inheritance Program (ZY(2021-2023)-0401).

Author information

Authors and Affiliations

Authors

Contributions

HZ conceptualized the study. C-LD, H-XY and Y-QD wrote the original draft of the manuscript. C-LD, H-XY, Y-QD and HZ wrote, reviewed and edited the manuscript. KR and HZ contributed to verification and recommendation. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The review was written in accordance with ethical standards.

Consent for publication

All authors gave consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Article note has been updated as ‘’Chun-Lan Dai and Hong-Xuan Yang contributed equally to this work and are co-first authors’’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, CL., Yang, HX., Liu, QP. et al. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 23, 4413–4427 (2023). https://doi.org/10.1007/s10238-023-01152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01152-8

Keywords

Navigation