Skip to main content

Advertisement

Log in

The role of FoxM1 in immune cells

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Forkhead box M1 (FoxM1), a proliferation specific transcriptional modulator, plays a principal role in many physiological and pathological processes. FoxM1-mediated oncogenic processes have been well addressed. However, functions of FoxM1 in immune cells are less summarized. The literatures about the expression of FoxM1 and its regulation on immune cells were searched on PubMed and Google Scholar. In this review, we provide an overview on the roles of FoxM1 in regulating functions of immune cells, including T cells, B cells, monocytes, macrophages, and dendritic cells, and discuss their contributions to diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Wang J, Li W, Zhao Y, et al. Members of FOX family could be drug targets of cancers. Pharmacol Ther. 2018;181:183–96. https://doi.org/10.1016/j.pharmthera.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  2. Golson ML, Kaestner KH. Fox transcription factors: from development to disease. Development. 2016;143:4558–70. https://doi.org/10.1242/dev.112672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson BC, Carpenter C, Nebert DW, Vasiliou V. Update of human and mouse forkhead box (FOX) gene families. Hum Genom. 2010;4:345–52. https://doi.org/10.1186/1479-7364-4-5-345.

    Article  CAS  Google Scholar 

  4. Herman L, Todeschini AL, Veitia RA. Forkhead transcription factors in health and disease. Trends Genet. 2021;37:460–75. https://doi.org/10.1016/j.tig.2020.11.003.

    Article  CAS  PubMed  Google Scholar 

  5. Kalathil D, John S, Nair AS. FOXM1 and cancer: faulty cellular signaling derails homeostasis. Front Oncol. 2020;10:626836. https://doi.org/10.3389/fonc.2020.626836.

    Article  PubMed  Google Scholar 

  6. Sher G, Masoodi T, Patil K, et al. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol. 2022. https://doi.org/10.1016/j.semcancer.2022.07.009.

    Article  PubMed  Google Scholar 

  7. Rajamanickam S, Panneerdoss S, Gorthi A, et al. Inhibition of FoxM1-mediated DNA repair by imipramine blue suppresses breast cancer growth and metastasis. Clin Cancer Res. 2016;22:3524–36. https://doi.org/10.1158/1078-0432.CCR-15-2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Wu M, Lei Z, et al. Dysregulation of miR-6868-5p/FOXM1 circuit contributes to colorectal cancer angiogenesis. J Exp Clin Cancer Res. 2018;37:292. https://doi.org/10.1186/s13046-018-0970-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosh S, Singh R, Vanwinkle ZM, et al. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics. 2022;12:5574–95. https://doi.org/10.7150/thno.70754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren X, Shah TA, Ustiyan V, et al. FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol. 2013;33:371–86. https://doi.org/10.1128/MCB.00934-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue L, Chiang L, He B, Zhao YY, Winoto A. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes. PLoS ONE. 2010;5:e9229. https://doi.org/10.1371/journal.pone.0009229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: repurposing an oncogene as a biomarker. Semin Cancer Biol. 2018;52:74–84. https://doi.org/10.1016/j.semcancer.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  13. Korver W, Roose J, Heinen K, et al. The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics. 1997;46:435–42. https://doi.org/10.1006/geno.1997.5065.

    Article  CAS  PubMed  Google Scholar 

  14. Gartel AL. FOXM1 in cancer: interactions and vulnerabilities. Cancer Res. 2017;77:3135–9. https://doi.org/10.1158/0008-5472.CAN-16-3566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang YL, Ma Y, Zeng YQ, et al. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. Ann Transl Med. 2021;9:1704. https://doi.org/10.21037/atm-21-5271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Wu F, Tan Q, et al. The multifaceted roles of FOXM1 in pulmonary disease. Cell Commun Signal. 2019;17:35. https://doi.org/10.1186/s12964-019-0347-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Littler DR, Alvarez-Fernandez M, Stein A, et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010;38:4527–38. https://doi.org/10.1093/nar/gkq194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wierstra I, Alves J. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol Chem. 2006;387:949–62. https://doi.org/10.1515/BC.2006.119.

    Article  CAS  PubMed  Google Scholar 

  19. Kalinichenko VV, Major ML, Wang X, et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 2004;18:830–50. https://doi.org/10.1101/gad.1200704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanders DA, Gormally MV, Marsico G, et al. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol. 2015;16:130. https://doi.org/10.1186/s13059-015-0696-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kopanja D, Chand V, O’Brien EM, et al. Transcriptional repression by FoxM1 suppresses tumor differentiation and promotes metastasis of breast cancer. Cancer Res. 2022. https://doi.org/10.1158/0008-5472.CAN-22-0410.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang IC, Chen YJ, Hughes D, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94. https://doi.org/10.1128/MCB.25.24.10875-10894.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Barger CJ, Karpf AR. FOXM1: a multifunctional oncoprotein and emerging therapeutic target in ovarian cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13123065.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bella L, Zona S, Nestal de Moraes G, Lam EW. FOXM1: a key oncofoetal transcription factor in health and disease. Semin Cancer Biol. 2014;29:32–9. https://doi.org/10.1016/j.semcancer.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  25. Goldschneider I. Cyclical mobilization and gated importation of thymocyte progenitors in the adult mouse: evidence for a thymus-bone marrow feedback loop. Immunol Rev. 2006;209:58–75. https://doi.org/10.1111/j.0105-2896.2006.00354.x.

    Article  PubMed  Google Scholar 

  26. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76. https://doi.org/10.1146/annurev.immunol.21.120601.141107.

    Article  CAS  PubMed  Google Scholar 

  27. Takaba H, Takayanagi H. The mechanisms of T cell selection in the thymus. Trends Immunol. 2017;38:805–16. https://doi.org/10.1016/j.it.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  28. Enouz S, Carrie L, Merkler D, Bevan MJ, Zehn D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J Exp Med. 2012;209:1769–79. https://doi.org/10.1084/jem.20120905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Korver W, Roose J, Wilson A, Clevers H. The winged-helix transcription factor Trident is expressed in actively dividing lymphocytes. Immunobiology. 1997;198:157–61. https://doi.org/10.1016/S0171-2985(97)80036-8.

    Article  CAS  PubMed  Google Scholar 

  30. Starbeck-Miller GR, Xue HH, Harty JT. IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med. 2014;211:105–20. https://doi.org/10.1084/jem.20130901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92–102. https://doi.org/10.1016/j.bbcan.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  32. Laoukili J, Kooistra MR, Bras A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7:126–36. https://doi.org/10.1038/ncb1217.

    Article  CAS  PubMed  Google Scholar 

  33. Leung TW, Lin SS, Tsang AC, et al. Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett. 2001;507:59–66. https://doi.org/10.1016/s0014-5793(01)02915-5.

    Article  CAS  PubMed  Google Scholar 

  34. Wilkens AB, Fulton E, Pont MJ, et al. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood. 2022. https://doi.org/10.1182/blood.2021015144.

    Article  PubMed  Google Scholar 

  35. Mata M, Gerken C, Nguyen P, et al. Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 2017;7:1306–19. https://doi.org/10.1158/2159-8290.CD-17-0263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prinzing B, Schreiner P, Bell M, et al. MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.136093.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kondo T, Ando M, Nagai N, et al. The NOTCH-FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory-like CAR-T cells. Cancer Res. 2020;80:471–83. https://doi.org/10.1158/0008-5472.CAN-19-1196.

    Article  CAS  PubMed  Google Scholar 

  38. Melchers F. Checkpoints that control B cell development. J Clin Investig. 2015;125:2203–10. https://doi.org/10.1172/JCI78083.

    Article  PubMed  PubMed Central  Google Scholar 

  39. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112:1570–80. https://doi.org/10.1182/blood-2008-02-078071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131:959–71. https://doi.org/10.1016/j.jaci.2013.01.046.

    Article  CAS  PubMed  Google Scholar 

  41. Buchner M, Park E, Geng H, et al. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nat Commun. 2015;6:6471. https://doi.org/10.1038/ncomms7471.

    Article  CAS  PubMed  Google Scholar 

  42. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15:160–71. https://doi.org/10.1038/nri3795.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Iwata S, Hajime M, et al. Methionine commits cells to differentiate into plasmablasts through epigenetic regulation of BTB and CNC homolog 2 by the methyltransferase EZH2. Arthritis Rheumatol. 2020;72:1143–53. https://doi.org/10.1002/art.41208.

    Article  CAS  PubMed  Google Scholar 

  44. Akita K, Yasaka K, Shirai T, et al. Interferon alpha enhances B cell activation associated with FOXM1 induction: potential novel therapeutic strategy for targeting the plasmablasts of systemic lupus erythematosus. Front Immunol. 2020;11:498703. https://doi.org/10.3389/fimmu.2020.498703.

    Article  CAS  PubMed  Google Scholar 

  45. Lefebvre C, Rajbhandari P, Alvarez MJ, et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol Syst Biol. 2010;6:377. https://doi.org/10.1038/msb.2010.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12:715–23. https://doi.org/10.1038/ni.2060.

    Article  CAS  PubMed  Google Scholar 

  47. Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006;441:106–10. https://doi.org/10.1038/nature04687.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Muller GA, Quaas M, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol. 2013;33:227–36. https://doi.org/10.1128/MCB.00881-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sadasivam S, Duan S, DeCaprio JA. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 2012;26:474–89. https://doi.org/10.1101/gad.181933.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao B, Barrera LA, Ersing I, et al. The NF-kappaB genomic landscape in lymphoblastoid B cells. Cell Rep. 2014;8:1595–606. https://doi.org/10.1016/j.celrep.2014.07.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang IC, Ustiyan V, Zhang Y, et al. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D). Oncogene. 2014;33:5391–6. https://doi.org/10.1038/onc.2013.475.

    Article  CAS  PubMed  Google Scholar 

  52. Ganguly S, Kuravi S, Alleboina S, et al. Targeted therapy for EBV-associated B-cell neoplasms. Mol Cancer Res. 2019;17:839–44. https://doi.org/10.1158/1541-7786.MCR-18-0924.

    Article  CAS  PubMed  Google Scholar 

  53. Consolaro F, Basso G, Ghaem-Magami S, Lam EW, Viola G. FOXM1 is overexpressed in B-acute lymphoblastic leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to chemotherapeutic drugs. Int J Oncol. 2015;47:1230–40. https://doi.org/10.3892/ijo.2015.3139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuttikrishnan S, Prabhu KS, Khan AQ, et al. Thiostrepton inhibits growth and induces apoptosis by targeting FoxM1/SKP2/MTH1 axis in B-precursor acute lymphoblastic leukemia cells. Leuk Lymphoma. 2021;62:3170–80. https://doi.org/10.1080/10428194.2021.1957873.

    Article  CAS  PubMed  Google Scholar 

  55. Boer JM, den Boer ML. BCR-ABL1-like acute lymphoblastic leukaemia: from bench to bedside. Eur J Cancer. 2017;82:203–18. https://doi.org/10.1016/j.ejca.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  56. Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643–75. https://doi.org/10.1146/annurev-immunol-032414-112220.

    Article  CAS  PubMed  Google Scholar 

  57. Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021;81:1201–8. https://doi.org/10.1158/0008-5472.CAN-20-2990.

    Article  CAS  PubMed  Google Scholar 

  58. Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 2021;20:24. https://doi.org/10.1186/s12943-021-01313-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19061801.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62. https://doi.org/10.1016/j.immuni.2016.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Zhang B, Yang Y, Peng B, Ye R. FOXM1 accelerates wound healing in diabetic foot ulcer by inducing M2 macrophage polarization through a mechanism involving SEMA3C/NRP2/Hedgehog signaling. Diabetes Res Clin Pract. 2021;184:109121. https://doi.org/10.1016/j.diabres.2021.109121.

    Article  CAS  PubMed  Google Scholar 

  63. Goda C, Balli D, Black M, et al. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway. PLoS Genet. 2020;16:e1008692. https://doi.org/10.1371/journal.pgen.1008692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balli D, Ren X, Chou FS, et al. Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012;31:3875–88. https://doi.org/10.1038/onc.2011.549.

    Article  CAS  PubMed  Google Scholar 

  65. Daemen S, Gainullina A, Kalugotla G, et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 2021;34:108626. https://doi.org/10.1016/j.celrep.2020.108626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Investig. 2017;127:2904–15. https://doi.org/10.1172/JCI75005.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ren X, Zhang Y, Snyder J, et al. Forkhead box M1 transcription factor is required for macrophage recruitment during liver repair. Mol Cell Biol. 2010;30:5381–93. https://doi.org/10.1128/MCB.00876-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sawaya AP, Stone RC, Brooks SR, et al. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun. 2020;11:4678. https://doi.org/10.1038/s41467-020-18276-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirani D, Alvira CM, Danopoulos S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J. 2022. https://doi.org/10.1183/13993003.02248-2020.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xia H, Ren X, Bolte CS, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611–21. https://doi.org/10.1165/rcmb.2014-0091OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17:216–28. https://doi.org/10.1038/s41569-019-0265-3.

    Article  CAS  PubMed  Google Scholar 

  72. Szpak D, Izem L, Verbovetskiy D, et al. alphaMbeta2 is antiatherogenic in female but not male mice. J Immunol. 2018;200:2426–38. https://doi.org/10.4049/jimmunol.1700313.

    Article  CAS  PubMed  Google Scholar 

  73. Gage MC, Becares N, Louie R, et al. Disrupting LXRalpha phosphorylation promotes FoxM1 expression and modulates atherosclerosis by inducing macrophage proliferation. Proc Natl Acad Sci USA. 2018;115:E6556–65. https://doi.org/10.1073/pnas.1721245115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767.

    Article  CAS  PubMed  Google Scholar 

  75. Gardner A, de Mingo Pulido A, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020;11:924. https://doi.org/10.3389/fimmu.2020.00924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92. https://doi.org/10.1146/annurev.immunol.021908.132557.

    Article  CAS  PubMed  Google Scholar 

  77. Wan H, Dupasquier M. Dendritic cells in vivo and in vitro. Cell Mol Immunol. 2005;2:28–35.

    PubMed  Google Scholar 

  78. Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17:30–48. https://doi.org/10.1038/nri.2016.116.

    Article  CAS  PubMed  Google Scholar 

  79. Zhou Z, Chen H, Xie R, et al. Epigenetically modulated FOXM1 suppresses dendritic cell maturation in pancreatic cancer and colon cancer. Mol Oncol. 2019;13:873–93. https://doi.org/10.1002/1878-0261.12443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 82072927).

Author information

Authors and Affiliations

Authors

Contributions

JZ and PZ drafted the main body of this manuscript and drew the figures. XB, XW and XM modified the manuscript. PZ and XM took primary responsibility for this paper as the corresponding author. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xuezhen Ma or Peng Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors gave their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Bu, X., Wei, X. et al. The role of FoxM1 in immune cells. Clin Exp Med 23, 1973–1979 (2023). https://doi.org/10.1007/s10238-023-01037-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01037-w

Keywords

Navigation