Skip to main content

Advertisement

Log in

Untargeted metabolomics identifies potential serum biomarkers associated with Crohn’s disease

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Crohn’s disease (CD) is well characterized by chronic inflammation of the gastrointestinal tract. The diagnose of CD relays on the comprehensive evaluation of patient symptoms, laboratory examination, radiology, and endoscopy. There is lack of biomarkers or simple test for CD detection. Serum samples from healthy subjects (n = 16) and CD patients (n = 16) were collected and prepared for untargeted metabolomics analysis using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method. The alterations of serum metabolites and the potential biomarkers were profiled by statistical analysis. And the associated metabolic pathway was analyzed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The performance of potential biomarkers was assessed by receiver operating characteristic (ROC) analysis. A complete separation between HS and CD groups was seen in OPLS-DA. A total of 108 and 131 significantly altered metabolites in positive and negative ion mode, respectively, were identified, and most of them belong to several pathways ranging from lipid metabolism to amino acid metabolism and energy homeostasis. KEGG analysis revealed that lipid metabolism enriched most significantly. Further, ceramide, phosphatidylethanolamine (PE), and taurochenodeoxycholic acid (TCDCA) presented the highest predictive accuracy of the patients with CD as analyzed by ROC. The current study demonstrated that lipid metabolism is mostly related to CD pathogenesis. Further investigations are indicated to examine the use of lipid-related metabolites of ceramide, PE, and TCDCA as potential biomarkers for CD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berre LC, Ricciuto A, Peyrin-Biroulet L, et al. Evolving short- and long-term goals of management of IBD: getting it right, making it last. Gastroenterology. 2021;162(5):1424–38.

    Article  Google Scholar 

  2. Kovari B, Bothori A, Friedman MS, et al. Histologic diagnosis of inflammatory bowel diseases. Adv Anat Pathol. 2022;29(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  3. Snyder EF, Davis S, Aldrich K, et al. Crohn disease: Identification, diagnosis, and clinical management. Nurse Pract. 2021;46(12):22–30.

    Article  PubMed  Google Scholar 

  4. Huang S, Ben-Horin S, Mao R, et al. Mucosal healing is associated with the reduced disabling disease in Crohn’s disease. Clin Transl Gastroenterol. 2019;10(3):e00015.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ashton JJ, Boukas K, Stafford IS, Cheng G, et al. Deleterious genetic variation across the NOD signaling pathway is associated with reduced NFKB signaling transcription and upregulation of alternative inflammatory transcripts in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2022;28(6):912–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Antoniussen CS, Rasmussen HH, Holst M, et al. Reducing disease activity of inflammatory bowel disease by consumption of plant-based foods and nutrients. Front Nutr. 2021;8:733433.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perez K, Ngollo M, Rabinowitz K, et al. Meta-analysis of IBD Gut samples gene expression identifies specific markers of ileal and colonic diseases. Inflamm Bowel Dis. 2021;28(5):816.

    Article  Google Scholar 

  8. Qv L, Mao S, Li Y, et al. Roles of gut bacteriophages in the pathogenesis and treatment of inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11:755650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caioni G, Viscido A, Angelo M, et al. Inflammatory bowel disease: new insights into the interplay between environmental factors and PPARgamma. Int J Mol Sci. 2021;22(3):985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305.

    Article  CAS  PubMed  Google Scholar 

  11. Kolho KL, Pessia A, Jaakkola J, et al. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J Crohns Colitis. 2017;11(3):321–34.

    PubMed  Google Scholar 

  12. Williams HR, Willsmore JD, Cox IJ, et al. Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci. 2012;57(8):2157–65.

    Article  CAS  PubMed  Google Scholar 

  13. Scoville EA, Allaman MM, Brown CT, et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics. 2018;14(1):17.

    Article  PubMed  Google Scholar 

  14. Want EJ, Wilson ID, Gika H, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5(6):1005–18.

    Article  CAS  PubMed  Google Scholar 

  15. Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Junot C, Witting M, et al. Identification of molecules from non-targeted analysis. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1071:1–2.

    Article  CAS  Google Scholar 

  17. Mizuno H, Ueda K, Kobayashi Y, et al. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics. Biomed Chromatogr. 2017;31(1):555.

    Article  Google Scholar 

  18. Yang J, Wei T, Wang K, et al. Non-targeted metabolomic analysis predicts the therapeutic effects of exenatide on endothelial injury in patients with type 2 diabetes. J Diabetes Complicat. 2021;35(2):107797.

    Article  CAS  Google Scholar 

  19. Wang J, Wang X, Ma X, et al. Therapeutic effect of Patrinia villosa on TNBS-induced ulcerative colitis via metabolism, vitamin D receptor and NF-κB signaling pathways. J Ethnopharmacol. 2022;288:114989.

    Article  CAS  PubMed  Google Scholar 

  20. Iwatani S, Iijima H, Otake Y, et al. Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J Gastroenterol Hepatol. 2020;35(8):1355–64.

    Article  CAS  PubMed  Google Scholar 

  21. Lai Y, Iijima H, Otake Y, et al. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn’s disease. Molecules. 2019;24(3):449.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boldyreva LV, Morozova MV, Saydakova SS, et al. Fat of the gut: epithelial phospholipids in inflammatory bowel diseases. Int J Mol Sci. 2021;22(21):11682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bromke MA, Krzystek-Korpacka M. Bile acid signaling in inflammatory bowel disease. Int J Mol Sci. 2021;22(16):9096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adegbola SO, Sarafian M, Sahnan K, et al. Differences in amino acid and lipid metabolism distinguish Crohn’s from idiopathic/cryptoglandular perianal fistulas by tissue metabonomic profiling and may offer clues to underlying pathogenesis. Eur J Gastroenterol Hepatol. 2021;33(12):1469–79.

    Article  CAS  PubMed  Google Scholar 

  25. Dawiskiba T, Deja S, Mulak A, et al. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J Gastroenterol. 2014;20(1):163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salaga M, Bartoszek A, Binienda A, et al. Activation of free fatty acid receptor 4 affects intestinal inflammation and improves colon permeability in mice. Nutrients. 2021;13(8):2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Horta D, Moreno-Torres M, Ramírez-Lázaro MJ, et al. Analysis of the association between fatigue and the plasma lipidomic profile of inflammatory bowel disease patients. J Proteome Res. 2021;20(1):381–92.

    Article  CAS  PubMed  Google Scholar 

  28. Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155–64.

    Article  CAS  PubMed  Google Scholar 

  29. Diab J, Hansen T, Goll R, et al. Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm Bowel Dis. 2019;25(11):1780–7.

    Article  PubMed  Google Scholar 

  30. Fan F, Mundra PA, Fang L, et al. Lipidomic profiling in inflammatory bowel disease: comparison between ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2015;21(7):1511–8.

    Article  PubMed  Google Scholar 

  31. Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ra EA, Lee TA, Kim SW, et al. TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat Commun. 2016;7:11726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uchiyama K, Odahara S, Nakamura M, et al. The fatty acid profile of the erythrocyte membrane in initial-onset inflammatory bowel disease patients. Dig Dis Sci. 2013;58(5):1235–43.

    Article  CAS  PubMed  Google Scholar 

  34. Jozefowski S, Czerkies M, Łukasik A, et al. Ceramide and ceramide 1-phosphate are negative regulators of TNF-alpha production induced by lipopolysaccharide. J Immunol. 2010;185(11):6960–73.

    Article  CAS  PubMed  Google Scholar 

  35. Helke K, Angel P, Lu P, et al. Ceramide synthase 6 deficiency enhances inflammation in the DSS model of colitis. Sci Rep. 2018;8(1):1627.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alhouayek M, Ameraoui H, Muccioli GG. Bioactive lipids in inflammatory bowel diseases-from pathophysiological alterations to therapeutic opportunities. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(2):158854.

    Article  CAS  PubMed  Google Scholar 

  37. Angulo S, Morales A, Danese S, et al. Probiotic sonicates selectively induce mucosal immune cells apoptosis through ceramide generation via neutral sphingomyelinase. PLoS ONE. 2011;6(3):e16953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baur P, Martin F, Gruber L, et al. Metabolic phenotyping of the Crohn’s disease-like IBD etiopathology in the TNF(DeltaARE/WT) mouse model. J Proteome Res. 2011;10(12):5523–35.

    Article  CAS  PubMed  Google Scholar 

  39. Sewell GW, Martin F, Gruber L, et al. Lipidomic profiling in Crohn’s disease: abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition. Int J Biochem Cell Biol. 2012;44(11):1839–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alghamdi A, Martin F, Gruber L, et al. Untargeted metabolomics of extracts from faecal samples demonstrates distinct differences between paediatric Crohn’s disease patients and healthy controls but no significant changes resulting from exclusive enteral nutrition treatment. Metabolites. 2018;8(4):5523–35.

    Article  Google Scholar 

  41. Kurz J, Parnham MJ, Geisslinger G, et al. Ceramides as novel disease biomarkers. Trends Mol Med. 2019;25(1):20–32.

    Article  CAS  PubMed  Google Scholar 

  42. Fiorucci S, Cipriani S, Mencarelli A, et al. Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr Mol Med. 2010;10(6):579–95.

    CAS  PubMed  Google Scholar 

  43. Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9–21.

    Article  CAS  PubMed  Google Scholar 

  44. Bossche LVD, Borsboom D, Devriese S, et al. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn’s disease-like ileitis. Lab Invest. 2017;97(5):519–29.

    Article  PubMed  Google Scholar 

  45. Zhai Z, Niu K, Liu Y, et al. The gut microbiota-bile acids-TGR5 axis mediates eucommia ulmoides leaf extract alleviation of injury to colonic epithelium integrity. Front Microbiol. 2021;12:727681.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun. 2011;409(4):610–5.

    Article  CAS  PubMed  Google Scholar 

  47. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62(4):531–9.

    Article  CAS  PubMed  Google Scholar 

  48. Bossche LVD, Hindryckx P, Devisscher L, et al. Ursodeoxycholic acid and its taurine- or glycine-conjugated species reduce colitogenic dysbiosis and equally suppress experimental colitis in mice. appl Environ Microbiol. 2017;83(7):e02766-e2816.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hunan Education Department Project (NO.20A390). The Science and Technology Project of Huaihua (NO.2020R3103). The Foundation of Hunan Provincial Natural Science (2021JJ30540), The Foundation of Hunan Double First-rate Discipline Construction Projects of Bioengineering.

Funding

This work was supported by the Hunan Education Department Project (NO.20A390). The Science and Technology Project of Huaihua (NO.2020R3103). National Innovation and Entrepreneurship Training Program (S202010548007). Hunan Provincial Natural Science Foundation (NO.2021JJ30540). Huaihua University key projects (HHUY2019-07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and performance of this study. Material preparation, data collection and analysis were conducted by CB, WY, WQ, LD, HX, KX, WS and HZ. The manuscript was drafted by CB and revised by WY and HZ. The final version of manuscript was approved by all authors.

Corresponding author

Correspondence to Zhaotun Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 40 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, Y., Wang, Q. et al. Untargeted metabolomics identifies potential serum biomarkers associated with Crohn’s disease. Clin Exp Med 23, 1751–1761 (2023). https://doi.org/10.1007/s10238-022-00931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00931-z

Keywords

Navigation