Skip to main content

Advertisement

Log in

Highlights in clinical medicine—Giant cell arteritis, polymyalgia rheumatica and Takayasu’s arteritis: pathogenic links and therapeutic implications

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Giant cell arteritis (GCA), frequently associated with polymyalgia rheumatica (PMR), and Takayasu’s arteritis (TAK) are characterized by extensive vascular remodeling that results in occlusion and stenosis. The pathophysiological mechanisms underlying the onset of GCA/PMR and TAK are still hypothetical. However, similarities and differences in the immunopathology and clinical phenotypes of these diseases point toward a possible link between them. The loss of tolerance in the periphery, a breakdown of tissue barriers, and the development of granulomatous vasculitis define a disease continuum. However, statistically powered studies are needed to confirm these correlations. In addition to glucocorticoids, inhibition of the interleukin-6 axis has been proposed as a cornerstone in the treatment of GCA/PMR and TAK. Novel biologic agents targeting the pathogenic pathway at various levels hold promise to achieve glucocorticoid-free sustained remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CCL:

C-C motif chemokine ligand

CCR:

C-C motif chemokine receptor

CD:

Cluster of differentiation

CPK:

Creatine phosphokinase

CRP:

C-reactive protein

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

CXCL:

C-X-C motif ligand

CXCR:

C-X-C motif chemokine receptor

GCA:

Giant cell arteritis

ESR:

Erythrocyte sedimentation rate

ET-1:

Endothelin-1

FGF:

Fibroblast growth factor

GCs:

Glucocorticoids

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HLA:

Human leukocyte antigen

IFN-γ:

Interferon gamma

IL:

Interleukin

IL-1RA:

Interleukin-1 receptor A

JAK:

Janus kinase

MCP:

Metacarpophalangeal

MICA:

Human major histocompatibility complex (MHC) class I chain-related gene A

MMP-9:

Matrix metalloproteinase-9

mTOR:

Mechanistic target of rapamycin

MTX:

Methotrexate

NK:

Natural killer cells

PD-L1:

Programmed death ligand 1

PD-1:

Programmed death 1

PDGF:

Platelet-derived growth factor

PIP:

Proximal interphalangeal

PMR:

Polymyalgia rheumatica

STAT:

Signal transducer and activator of transcription

T4:

Thyroxine

TAK:

Takayasu's arteritis

Th:

T helper cells

TLR:

Toll-like-receptors

Treg:

T-regulatory cells

Tγδ:

Gamma-delta T cells

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

VZV:

Varicella zoster virus

References

  1. Barber HS. Myalgic syndrome with constitutional effects; polymyalgia rheumatica. Ann Rheum Dis. 1957;16:230–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dejaco C, Duftner C, Buttgereit F, et al. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatology (Oxford). 2017;56:506–15.

    CAS  Google Scholar 

  3. Dejaco C, Brouwer E, Mason JC, et al. Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities. Nat Rev Rheumatol. 2017;13:578–92.

    Article  PubMed  Google Scholar 

  4. Buttgereit F, Dejaco C, Matteson EL, et al. Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA. 2016;315:2442–58.

    Article  PubMed  CAS  Google Scholar 

  5. Blockmans D, de Ceuninck L, Vanderschueren S, et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 2006;55:131–7.

    Article  PubMed  Google Scholar 

  6. Dammacco R, Alessio G, Giancipoli E, et al. Giant cell arteritis: the experience of two collaborative referral centers and an overview of disease pathogenesis and therapeutic advancements. Clin Ophthalmol. 2020;14:775–93.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fauchald P, Rygvold O, Oystese B. Temporal arteritis and polymyalgia rheumatic. Clinical and biopsy findings. Ann Intern Med. 1972;77:845–52.

    Article  PubMed  CAS  Google Scholar 

  8. Salvarani C, Cantini F, Boiardi L, et al. Polymyalgia rheumatica and giant-cell arteritis. N Engl J Med. 2002;347:261–71.

    Article  PubMed  Google Scholar 

  9. Ghosh P, Borg FA, Dasgupta B. Current understanding and management of giant cell arteritis and polymyalgia rheumatica. Expert Rev Clin Immunol. 2010;6:913–28.

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez-Gay MA, Vazquez-Rodriguez TR, Lopez-Diaz MJ, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum. 2009;61:1454–61.

    Article  PubMed  Google Scholar 

  11. Gilden D, White T, Khmeleva N, et al. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology. 2015;84:1948–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Samson M, Corbera-Bellalta M, Audia S, et al. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev. 2017;16:833–44.

    Article  PubMed  CAS  Google Scholar 

  13. Cutolo M, Cimmino MA, Sulli A. Polymyalgia rheumatica vs late-onset rheumatoid arthritis. Rheumatology (Oxford). 2009;48:93–5.

    Article  CAS  Google Scholar 

  14. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1–11.

    Article  PubMed  CAS  Google Scholar 

  15. Kermani TA. Takayasu arteritis and giant cell arteritis: are they a spectrum of the same disease? Int J Rheum Dis. 2019;22(Suppl 1):41–8.

    Article  PubMed  Google Scholar 

  16. Hellmich B, Agueda A, Monti S, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79:19–30.

    Article  PubMed  Google Scholar 

  17. Serra R, Butrico L, Fugetto F, et al. Updates in Pathophysiology, Diagnosis and Management of Takayasu Arteritis. Annals of Vascular Surgery [Internet]. 2016 [cited 2021 Aug 30];35:210–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0890509616303715

  18. Kermani TA, Diab S, Sreih AG, et al. Arterial lesions in giant cell arteritis: a longitudinal study. Semin Arthritis Rheum. 2019;48:707–13.

    Article  PubMed  Google Scholar 

  19. Dammacco F, Cirulli A, Simeone A, et al. Takayasu arteritis: a cohort of Italian patients and recent pathogenetic and therapeutic advances. Clin Exp Med. 2021;21:49–62.

    Article  PubMed  Google Scholar 

  20. Akiyama M, Ohtsuki S, Berry GJ, et al. Innate and adaptive immunity in giant cell arteritis. Front Immunol. 2020;11:621098.

    Article  PubMed  CAS  Google Scholar 

  21. Jin K, Wen Z, Wu B, et al. NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. J Clin Invest. 2021;131:136042.

    Article  PubMed  Google Scholar 

  22. Zhang H, Watanabe R, Berry GJ, et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci U S A. 2017;114:E970–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Weyand CM, Goronzy JJ. Clinical practice. Giant-cell arteritis and polymyalgia rheumatica. N Engl J Med. 2014;371:50–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Watanabe R, Berry GJ, et al. CD28 Signaling controls metabolic fitness of pathogenic T cells in medium and large vessel vasculitis. J Am Coll Cardiol. 2019;73:1811–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Samson M, Audia S, Fraszczak J, et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 2012;64:3788–98.

    Article  PubMed  CAS  Google Scholar 

  26. Corbera-Bellalta M, García-Martínez A, Lozano E, et al. Changes in biomarkers after therapeutic intervention in temporal arteries cultured in Matrigel: a new model for preclinical studies in giant-cell arteritis. Ann Rheum Dis. 2014;73:616–23.

    Article  PubMed  CAS  Google Scholar 

  27. Deng J, Younge BR, Olshen RA, et al. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121:906–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Terrier B, Geri G, Chaara W, et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 2012;64:2001–11.

    Article  PubMed  CAS  Google Scholar 

  29. Kurata A, Saito A, Hashimoto H, et al. Difference in immunohistochemical characteristics between Takayasu arteritis and giant cell arteritis: It may be better to distinguish them in the same age. Mod Rheumatol. 2019;29:992–1001.

    Article  PubMed  CAS  Google Scholar 

  30. Arnold S, Holl Ulrich K. Lamprecht P [Pathogenesis of large vessel vasculitides]. Z Rheumatol. 2020;79:505–15.

    Article  PubMed  CAS  Google Scholar 

  31. Maksimowicz-McKinnon K, Clark TM, Hoffman GS. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore). 2009;88:221–6.

    Article  Google Scholar 

  32. Hellmich B, Águeda AF, Monti S, et al. Treatment of Giant Cell Arteritis and Takayasu Arteritis—Current and Future. Curr Rheumatol Rep [Internet]. 2020 [cited 2021 Jul 20]; 22: 84. Available from: http://link.springer.com/https://doi.org/10.1007/s11926-020-00964-x

  33. Spanish GCA Study Group, Italian GCA Study Group, Turkish Takayasu Study Group, Vasculitis Clinical Research Consortium, Carmona FD, Coit P, et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep [Internet]. 2017 [cited 2021 Jul 20];7:43953. Available from: http://www.nature.com/articles/srep43953

  34. Uddhammar A, Sojka BN, Rantapää-Dahlqvist S. HLA antigens in polymyalgia rheumatica in northern Sweden. Clin Rheumatol. 1996;15:486–90.

    Article  PubMed  CAS  Google Scholar 

  35. Pisapia DJ, Lavi E. VZV, temporal arteritis, and clinical practice: False positive immunohistochemical detection due to antibody cross-reactivity. Exp Mol Pathol. 2016;100:114–5.

    Article  PubMed  CAS  Google Scholar 

  36. Njau F, Ness T, Wittkop U, et al. No correlation between giant cell arteritis and Chlamydia pneumoniae infection: investigation of 189 patients by standard and improved PCR methods. J Clin Microbiol. 2009;47:1899–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arnaud L, Cambau E, Brocheriou I, et al. Absence of Mycobacterium tuberculosis in Arterial Lesions from Patients with Takayasu’s Arteritis. J Rheumatol [Internet]. 2009 [cited 2021 Jul 20];36:1682–5. Available from: http://www.jrheum.org/lookup/doi/https://doi.org/10.3899/jrheum.080953

  38. Byrd AL, Segre JA. Adapting Koch’s postulates. Science [Internet]. 2016 [cited 2021 Jul 20];351:224–6. Available from: https://www.sciencemag.org/lookup/doi/https://doi.org/10.1126/science.aad6753

  39. Watanabe R. Comment on: Long-term efficacy and safety of tocilizumab in refractory Takayasu arteritis: final results of the randomized controlled phase 3 TAKT study. Rheumatology [Internet]. 2020 [cited 2021 Aug 4];59:e46–7. Available from: https://academic.oup.com/rheumatology/article/59/9/e46/5864208

  40. Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of giant cell arteritis and takayasu arteritis-similarities and differences. Curr Rheumatol Rep. 2020;22:68.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samson M, Greigert H, Ciudad M, et al. Improvement of Treg immune response after treatment with tocilizumab in giant cell arteritis. Clin Transl Immunology. 2021;10:e1332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schacke H. Mechanisms involved in the side effects of glucocorticoids. Pharmacology and Therapeutics [Internet]. 2002 [cited 2021 Oct 14];96:23–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163725802002978

  43. Ericson-Neilsen W, Kaye AD. Steroids: pharmacology, complications, and practice delivery issues. Ochsner J. 2014;14:203–7.

    PubMed  PubMed Central  Google Scholar 

  44. Ng MKC. Glucocorticoid treatment and cardiovascular disease. Heart [Internet]. 2004 [cited 2021 Oct 14];90:829–30. Available from: https://heart.bmj.com/lookup/doi/https://doi.org/10.1136/hrt.2003.031492

  45. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med [Internet]. 2004 [cited 2021 Oct 14];141:764. Available from: http://annals.org/article.aspx?doi=https://doi.org/10.7326/0003-4819-141-10-200411160-00007

  46. Kremers HM, Reinalda MS, Crowson CS, et al. Glucocorticoids and cardiovascular and cerebrovascular events in polymyalgia rheumatica. Arthritis Rheum [Internet]. 2007 [cited 2021 Oct 14];57:279–86. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/art.22548

  47. Pujades-Rodriguez M, Morgan AW, Cubbon RM, Wu J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study. Rahimi K, editor. PLoS Med [Internet]. 2020 [cited 2021 Oct 14];17:e1003432. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pmed.1003432

  48. Seyahi E, Ugurlu S, Cumali R, et al. Atherosclerosis in Takayasu arteritis. Ann Rheum Dis. 2006;65:1202–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ponte C, Rodrigues AF, O’Neill L, et al. Giant cell arteritis: current treatment and management. World J Clin Cases. 2015;3:484–94.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis: a review. J Clin Pathol. 2002;55:481–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kyle V, Hazleman BL. Treatment of polymyalgia rheumatica and giant cell arteritis. I. Steroid regimens in the first two months. Ann Rheum Dis. 1989;48:658–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Maleszewski JJ, Younge BR, Fritzlen JT, et al. Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Mod Pathol. 2017;30:788–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Conway R, O’Neill L, McCarthy GM, et al. Interleukin 12 and interleukin 23 play key pathogenic roles in inflammatory and proliferative pathways in giant cell arteritis. Ann Rheum Dis. 2018;77:1815–24.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation. 2018;137:1934–48.

    Article  PubMed  CAS  Google Scholar 

  55. Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, et al. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis. 2017;76:1624–34.

    Article  PubMed  Google Scholar 

  56. Régent A, Ly KH, Groh M, et al. Molecular analysis of vascular smooth muscle cells from patients with giant cell arteritis: targeting endothelin-1 receptor to control proliferation. Autoimmun Rev. 2017;16:398–406.

    Article  PubMed  Google Scholar 

  57. Weyand CM, Goronzy JJ. Pathogenic principles in giant cell arteritis. International Journal of Cardiology [Internet]. 2000 [cited 2021 Oct 10];75:S9–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167527300001984

  58. Crotti C, Agape E, Becciolini A, et al. Targeting Granulocyte-Monocyte Colony-Stimulating Factor Signaling in Rheumatoid Arthritis: Future Prospects. Drugs [Internet]. 2019 [cited 2021 Oct 10];79:1741–55. Available from: http://link.springer.com/https://doi.org/10.1007/s40265-019-01192-z

  59. Watanabe R, Berry GJ, Liang DH, et al. Cellular signaling pathways in medium and large vessel vasculitis. Front Immunol. 2020;11:587089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mahr AD, Jover JA, Spiera RF, et al. Adjunctive methotrexate for treatment of giant cell arteritis: an individual patient data meta-analysis. Arthritis Rheum. 2007;56:2789–97.

    Article  PubMed  CAS  Google Scholar 

  61. Stone JH, Tuckwell K, Dimonaco S, et al. Trial of Tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377:317–28.

    Article  PubMed  CAS  Google Scholar 

  62. Bhatia A. Anti-CD20 monoclonal antibody (rituximab) as an adjunct in the treatment of giant cell arteritis. Annals of the Rheumatic Diseases [Internet]. 2005 [cited 2021 Aug 4];64:1099–100. Available from: https://ard.bmj.com/lookup/doi/https://doi.org/10.1136/ard.2005.036533

  63. Weyand CM, Younge BR, Goronzy JJ. IFN-γ and IL-17: the two faces of T-cell pathology in giant cell arteritis. Curr Opin Rheumatol. 2011;23:43–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ly K-H, Stirnemann J, Liozon E, Michel M, Fain O, Fauchais A-L. Interleukin-1 blockade in refractory giant cell arteritis. Joint Bone Spine. 2014;81:76–8.

    Article  PubMed  CAS  Google Scholar 

  65. Langford CA, Cuthbertson D, Ytterberg SR, Khalidi N, Monach PA, Carette S, et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 2017;69:837–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lozano E, Segarra M, García-Martínez A, Hernández-Rodríguez J, Cid MC. Imatinib mesylate inhibits in vitro and ex vivo biological responses related to vascular occlusion in giant cell arteritis. Ann Rheum Dis. 2008;67:1581–8.

    Article  PubMed  CAS  Google Scholar 

  67. Taimen K, Heino S, Kohonen I, Relas H, Huovinen R, Hänninen A, et al. Granulocyte colony-stimulating factor- and chemotherapy-induced large-vessel vasculitis: six patient cases and a systematic literature review. Rheumatology Advances in Practice [Internet]. 2020 [cited 2021 Aug 4];4:rkaa004. Available from: https://academic.oup.com/rheumap/article/doi/https://doi.org/10.1093/rap/rkaa004/5728647

  68. Maciejewski-Duval A, Comarmond C, Leroyer A, Zaidan M, Le Joncour A, Desbois AC, et al. mTOR pathway activation in large vessel vasculitis. J Autoimmun. 2018;94:99–109.

    Article  PubMed  CAS  Google Scholar 

  69. Hadjadj J, Canaud G, Mirault T, Samson M, Bruneval P, Régent A, et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G. Rheumatology [Internet]. 2018 [cited 2021 Aug 4];57:1011–20. Available from: https://academic.oup.com/rheumatology/article/57/6/1011/4913314

  70. Wen Z, Shen Y, Berry G, et al. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Sci Transl Med. 2017;9.

  71. Conway R, O’Neill L, Gallagher P, et al. Ustekinumab for refractory giant cell arteritis: a prospective 52-week trial. Semin Arthritis Rheum. 2018;48:523–8.

    Article  PubMed  CAS  Google Scholar 

  72. Solimando AG, Ribatti D, Vacca A, et al. Targeting B-cell non Hodgkin lymphoma: new and old tricks. Leuk Res. 2016;42:93–104. https://doi.org/10.1016/j.leukres.2015.11.001.

    Article  PubMed  CAS  Google Scholar 

  73. Hoyer BF, Mumtaz IM, Loddenkemper K, et al. Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann Rheum Dis. 2012;71(1):75–9. https://doi.org/10.1136/ard.2011.153007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Franco Dammacco.

Ethics declarations

Conflict of interests

The authors have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solimando, A.G., Vacca, A. & Dammacco, F. Highlights in clinical medicine—Giant cell arteritis, polymyalgia rheumatica and Takayasu’s arteritis: pathogenic links and therapeutic implications. Clin Exp Med 22, 509–518 (2022). https://doi.org/10.1007/s10238-021-00770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00770-4

Keywords

Navigation