Skip to main content
Log in

Overexpression of teneurin transmembrane protein 1 is a potential marker of disease progression in papillary thyroid carcinoma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Although papillary thyroid cancer is a relatively indolent malignancy, its progression may be associated with dedifferentiation and resistance to radioactive iodine treatment. In this study, patterns of differentially expressed genes in association with disease progression were systemically evaluated. We firstly performed transcriptome analyses for four matched cancerous and noncancerous tissue pairs of the classical subtype of papillary thyroid cancer. Among the upregulated and downregulated genes, the expression of 164 and 183 genes increased and decreased, respectively, from stage I to stage IV. Functional enrichment and pathway analysis showed that angiogenesis pathway was upregulated, whereas oxidation–reduction and metabolism of reactive oxygen species were downregulated. Teneurin transmembrane protein 1 (TENM1) expression was highly upregulated in cancerous tissues and negative in benign thyroid tissues. By immunohistochemistry, TENM1 expression in papillary thyroid cancer was associated with the classical subtype (p = 0.018), extrathyroidal invasion (p = 0.001), BRAF V600E mutation (p < 0.001), and an advanced stage (p = 0.019). Taken together, our results indicate that distinct pathways are involved in papillary thyroid cancer progression, and TENM1 is a potential marker of cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haugen BR, Sherman SI. Evolving approaches to patients with advanced differentiated thyroid cancer. Endocr Rev. 2013;34:439–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivera M, Ghossein RA, Schoder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56.

    Article  PubMed  Google Scholar 

  3. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pak K, Suh S, Kim SJ, Kim IJ. Prognostic value of genetic mutations in thyroid cancer: a meta-analysis. Thyroid. 2015;25:63–70.

    Article  CAS  PubMed  Google Scholar 

  5. Yip L, Nikiforova MN, Yoo JY, et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann Surg. 2015;262:519–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97:4559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng SP, Hsu YC, Liu CL, et al. Significance of allelic percentage of BRAF c.1799T > A (V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol. 2014;21(Suppl 4):S619–26.

    Article  PubMed  Google Scholar 

  8. Soares P, Celestino R, Melo M, Fonseca E, Sobrinho-Simoes M. Prognostic biomarkers in thyroid cancer. Virchows Arch. 2014;464:333–46.

    Article  CAS  PubMed  Google Scholar 

  9. Montero-Conde C, Martin-Campos JM, Lerma E, et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene. 2008;27:1554–61.

    Article  CAS  PubMed  Google Scholar 

  10. Nilubol N, Sukchotrat C, Zhang L, He M, Kebebew E. Molecular pathways associated with mortality in papillary thyroid cancer. Surgery. 2011;150:1023–31.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011;9:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smallridge RC, Chindris AM, Asmann YW, et al. RNA sequencing identifies multiple fusion transcripts, differentially expressed genes, and reduced expression of immune function genes in BRAF (V600E) mutant vs BRAF wild-type papillary thyroid carcinoma. J Clin Endocrinol Metab. 2014;99:E338–47.

    Article  CAS  PubMed  Google Scholar 

  13. Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25:1966–7.

    Article  CAS  PubMed  Google Scholar 

  14. Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS ONE. 2014;9:e89563.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee F, Lee JJ, Jan WC, Wu CJ, Chen HH, Cheng SP. Molecular pathways associated with transcriptional alterations in hyperparathyroidism. Oncol Lett. 2016;12:621–6.

    PubMed  PubMed Central  Google Scholar 

  16. Wang TY, Liu CL, Chen MJ, Lee JJ, Pun PC, Cheng SP. Expression of haem oxygenase-1 correlates with tumour aggressiveness and BRAF V600E expression in thyroid cancer. Histopathology. 2015;66:447–56.

    Article  PubMed  Google Scholar 

  17. Cheng SP, Liu CL, Chen MJ, et al. CD74 expression and its therapeutic potential in thyroid carcinoma. Endocr Relat Cancer. 2015;22:179–90.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng SP, Yang PS, Chien MN, Chen MJ, Lee JJ, Liu CL. Aberrant expression of tumor-associated carbohydrate antigen Globo H in thyroid carcinoma. J Surg Oncol. 2016;114:853–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu YC, Liu CL, Yang PS, Tsai CH, Lee JJ, Cheng SP. Interaction of age at diagnosis with transcriptional profiling in papillary thyroid cancer. World J Surg. 2016;40:2922–9.

    Article  PubMed  Google Scholar 

  20. Rossing M. Classification of follicular cell-derived thyroid cancer by global RNA profiling. J Mol Endocrinol. 2013;50:R39–51.

    Article  CAS  PubMed  Google Scholar 

  21. Handkiewicz-Junak D, Czarniecka A, Jarzab B. Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol. 2010;322:8–28.

    Article  CAS  PubMed  Google Scholar 

  22. Finley DJ, Zhu B, Barden CB, Fahey TJ 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg. 2004;240:425–36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pita JM, Banito A, Cavaco BM, Leite V. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer. 2009;101:1782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell JC, Parangi S. Angiogenesis in benign and malignant thyroid disease. Thyroid. 2005;15:494–510.

    Article  PubMed  Google Scholar 

  25. Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet. 2013;381:1058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang D, Feng JF, Zeng P, Yang YH, Luo J, Yang YW. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr Relat Cancer. 2011;18:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabur S, Aksoy SN, Korkmaz H, Ozkaya M, Aksoy N, Akarsu E. Investigation of the role of 8-OHdG and oxidative stress in papillary thyroid carcinoma. Tumour Biol. 2015;36:2667–74.

    Article  CAS  PubMed  Google Scholar 

  28. Tucker RP, Chiquet-Ehrismann R. Teneurins: a conserved family of transmembrane proteins involved in intercellular signaling during development. Dev Biol. 2006;290:237–45.

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler A, Corvalan A, Roa I, Branes JA, Wollscheid B. Teneurin protein family: an emerging role in human tumorigenesis and drug resistance. Cancer Lett. 2012;326:1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 2001;98:15044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikolova DN, Zembutsu H, Sechanov T, et al. Genome-wide gene expression profiles of thyroid carcinoma: identification of molecular targets for treatment of thyroid carcinoma. Oncol Rep. 2008;20:105–21.

    CAS  PubMed  Google Scholar 

  32. Scholer J, Ferralli J, Thiry S, Chiquet-Ehrismann R. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1. J Biol Chem. 2015;290:8154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci. 2015;72:1249–60.

    Article  CAS  PubMed  Google Scholar 

  34. Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015;28:390–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Ministry of Science and Technology of Taiwan (MOST-103-2314-B-195-015-MY3) and MacKay Memorial Hospital (MMH-E-105-10 and MMH-10609). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Liang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study has been approved by an institutional review board of MacKay Memorial Hospital (12MMHIS175) and has been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 52 kb)

Supplementary material 2 (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SP., Chen, MJ., Chien, MN. et al. Overexpression of teneurin transmembrane protein 1 is a potential marker of disease progression in papillary thyroid carcinoma. Clin Exp Med 17, 555–564 (2017). https://doi.org/10.1007/s10238-016-0445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0445-y

Keywords

Navigation