Skip to main content

Advertisement

Log in

Myc and AP-1 expression in T cells and T-cell activation in patients after hematopoietic stem cell transplantation

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Regeneration of the immune system after hematopoietic stem cell transplantation (HSCT) is a slow process. We attempted to identify problems in the recovery of the immune system by examining expressions of early event cell cycle proteins Myc, Jun, and Fos, as well as DNA binding of Myc, activating protein 1 (AP-1), and CD4 cell activation values, in phytohemagglutinin-activated T lymphocytes taken from patients after HSCT. HSCT patients showed lower protein expression levels of Myc and Jun, as well as Myc and AP-1 DNA-binding levels, as compared to healthy controls. C-Jun was lower in long-term survivors of HSCT than short-term survivors. Adenosine triphosphate (ATP) values in CD4 cells were also lower in HSCT patients than healthy controls, but showed a time-dependent increase post-transplant. Non-surviving patients showed lower levels of both Fos protein and ATP as compared to surviving patients and a negative correlation between Fos values and lymphocyte percentage that was not present in surviving patients. There was a strong positive correlation between Fos values and lymphocyte percentage and between AP-1 values and white blood count, in patients without graft-versus-host disease (GVHD), that did not exist in patients who suffered from GVHD. Patients 2 years post-HSCT showed a positive correlation between AP-1 and Myc DNA-binding protein values, similar to those values found in healthy controls. Our study identified significant factors that account for the delay in immune reconstitution after transplant; this knowledge may improve the management of post-HSCT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jimenez M, Ercilla G, Martinez C (2007) Immune reconstitution after allogeneic stem cell transplantation with reduced-intensity conditioning regimens. Leukemia 21:1628–1637

    Article  CAS  PubMed  Google Scholar 

  2. Brugnoni D, Airo P, Pennacchio M, Carella G, Malagoli A, Ugazio AG, Porta F, Cattaneo R (1999) Immune reconstitution after bone marrow transplantation for combined immunodeficiencies: down-modulation of Bcl-2 and high expression of CD95/Fas account for increased susceptibility to spontaneous and activation-induced lymphocyte cell death. Bone Marrow Transpl 23:451–457

    Article  CAS  Google Scholar 

  3. Storek J, Joseph A, Espino G, Dawson MA, Douek DC, Sullivan KM, Flowers ME, Martin P, Mathioudakis G, Nash RA, Storb R, Appelbaum FR, Maloney DG (2001) Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood 98:3505–3512

    Article  CAS  PubMed  Google Scholar 

  4. Parkman R, Weinberg KI (1997) Immunological reconstitution following bone marrow transplantation. Immunol Rev 157:73–78

    Article  CAS  PubMed  Google Scholar 

  5. Guillaume T, Rubinstein DB, Symann M (1998) Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92:1471–1490

    CAS  PubMed  Google Scholar 

  6. Poulin JF, Sylvestre M, Champagne P, Dion ML, Kettaf N, Dumont A, Lainesse M, Fontaine P, Roy DC, Perreault C, Sekaly RP, Cheynier R (2003) Evidence for adequate thymic function but impaired naive T-cell survival following allogeneic hematopoietic stem cell transplantation in the absence of chronic graft-versus-host disease. Blood 102:4600–4607

    Article  CAS  PubMed  Google Scholar 

  7. Davison GM, Novitzky N, Kline A, Thomas V, Abrahams L, Hale G, Waldmann H (2000) Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells. Transplantation 69:1341–1347

    Article  CAS  PubMed  Google Scholar 

  8. Cleveland JL, Rapp UR, Farrar WL (1987) Role of c-Myc and other genes in interleukin 2 regulated CT6 T lymphocytes and their malignant variants. J Immunol 138:3495–3504

    CAS  PubMed  Google Scholar 

  9. Grausz JD, Fradelizi D, Dautry F, Monier R, Lehn P (1986) Modulation of c-fos and c-myc mRNA levels in normal human lymphocytes by calcium ionophore A23187 and phorbol ester. Eur J Immunol 16:1217–1221

    Article  CAS  PubMed  Google Scholar 

  10. Modiano JF, Mayor J, Ball C, Chitko-McKown CG, Sakata N, Domenico-Hahn J, Lucas JJ, Gelfand EW (1999) Quantitative and qualitative signals determine T-cell cycle entry and progression. Cell Immunol 197:19–29

    Article  CAS  PubMed  Google Scholar 

  11. Shapira MY, Tsirigotis P, Resnick IB, Or R, Abdul-Hai A, Slavin S (2007) Allogeneic hematopoietic stem cell transplantation in the elderly. Crit Rev Oncol Hematol 64:49–63

    Article  PubMed  Google Scholar 

  12. Petersen SL (2007) Alloreactivity as therapeutic principle in the treatment of hematologic malignancies. Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Dan Med Bull 54:112–139

    CAS  PubMed  Google Scholar 

  13. Vriz S, Lemaitre JM, Leibovici M, Thierry N, Mechali M (1992) Comparative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression. Mol Cell Biol 12:3548–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roux P, Blanchard JM, Fernandez A, Lamb N, Jeanteur P, Piechaczyk M (1990) Nuclear localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals. Cell 63:341–351

    Article  CAS  PubMed  Google Scholar 

  15. Hartenstein B, Teurich S, Hess J, Schenkel J, Schorpp-Kistner M, Angel P (2002) Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB. EMBO J 21:6321–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lwin WW, Park K, Wauson M, Gao Q, Finn PW, Perkins D, Khanna A (2012) Systems biology approach to transplant tolerance: proof of concept experiments using RNA Interference (RNAi) to knock down hub genes in Jurkat and HeLa Cells In Vitro. J Surg Res 176:e41–e46. doi:10.1016/j.jss.2011.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foletta VC, Segal DH, Cohen DR (1998) Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol 63:139–152

    CAS  PubMed  Google Scholar 

  18. Hughes-Fulforda M, Suganoa TE, Schopperd T, Lia CF, Boonyaratanakornkita JB, Cogolid A (2005) Early immune response and regulation of IL-2 receptor subunits. Cell Signal 17:1111–1124

    Article  Google Scholar 

  19. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029

    Article  CAS  PubMed  Google Scholar 

  20. Shipp MA, Reinherz EL (1987) Differential expression of nuclear proto-oncogenes in T cells triggered with mitogenic and nonmitogenic T3 and T11 activation signals. J immunol 139:2143–2148

    CAS  PubMed  Google Scholar 

  21. Dose M, Khan I, Guo Z, Kovalovsky D, Krueger A, Boehmer HV, Khazaie K, Gounari F (2006) c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 108:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang R, Dillon CP, Zhichang SL, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription Ffctor Myc controls metabolic reprogramming upon T Lymphocyte activation. Immunity 35:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindsten T, June CH, Thompson CB (1988) Multiple mechanisms regulate c-myc gene expression during normal T cell activation. EMBO J 7:2787–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiao X, Pham DN, Luo H, Wu J (2010) Ran overexpression leads to diminished T Cell responses and selectively modulates nuclear levels of c-Jun and c-Fos. J Biol Chem 285:5488–5496. doi:10.1074/jbc.M109.058024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes CC, Pober JS (1993) Costimulation of peripheral blood T cell activation by human endothelial cells. Enhanced IL-2 transcription correlates with increased c-fos synthesis and increased Fos content of AP-1. J Immunol 150:3148–3160

    CAS  PubMed  Google Scholar 

  26. Whisler RL, Chen M, Beiqing L, Carle KW (1997) Impaired induction of c-fos/c-jun genes and of transcriptional regulatory proteins binding distinct c-fos/c-jun promoter elements in activated human T cells during aging. Cell Immunol 175:41–50

    Article  CAS  PubMed  Google Scholar 

  27. Whisler RL, Beiqing L, Wu LC, Chen M (1993) Reduced activation of transcriptional factor AP-1 among peripheral blood T cells from elderly humans after PHA stimulation: restorative effect of phorbol diesters. Cell Immunol 152:96–109

    Article  CAS  PubMed  Google Scholar 

  28. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. doi:10.1038/nrc1209

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe M, Nakajima S, Ohnuki K, Ogawa S, Yamashita M, Nakayama T, Murakami Y, Tanabe K, Abe R (2012) AP-1 is involved in ICOS gene expression downstream of TCR/CD28 and cytokine receptor signaling. Eur J Immunol 42:1850–1862

    Article  CAS  PubMed  Google Scholar 

  30. Horgan AF, Mendez MV, O’Riordain DS, Holzheimer RG, Mannick JA, Rodrick ML (1994) Altered gene transcription after burn injury results in depressed T-lymphocyte activation. Ann Surg 220:342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walters ED, Drullinger LF, Kugel JF, Goodrich JA (2013) NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription. Mol Immunol 56:48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Macia F, Garcıa-Cozar F, Sin-Hyeog I, Horton HF, Byrne MC, Rao A (2002) Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109:719–731

    Article  Google Scholar 

  33. Heisel O, Keown P (2001) Alteration in transcription factor binding at the IL-2 promotor region un anergized human CD4+ T lymphocytes. Transplantation 72:1416–1422

    Article  CAS  PubMed  Google Scholar 

  34. Sottong PR, Rosebrock JA, Britz JA, Kramer TR (2000) Measurement of T-lymphocyte responses in whole-blood cultures using newly synthesized DNA and ATP. Clin Vaccine Immunol 7:307–311

    Article  CAS  Google Scholar 

  35. White AG, Raju KT, Keddie S, Abouna GM (1989) Lymphocyte activation: changes in intracellular adenosine triphosphate and deoxyribonucleic acid synthesis. Immunol Lett 22:47–50

    Article  CAS  PubMed  Google Scholar 

  36. Lewin SR, Heller G, Zhang L, Rodrigues E, Skulsky E, van den Brink MR, Small TN, Kernan NA, O’Reilly RJ, Ho DD, Young JW (2002) Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood 100:2235–2242

    CAS  PubMed  Google Scholar 

  37. Selvatici R, Rubini M, Orlando P, Balboni A, Gandini E (1990) C-fos, c-myc and IL-2R mRNA expression in PHA activated T lymphocytes treated with a monoclonal anti-HLA class I antibody (MAb 01.65). Biochem Int 22:397–403

    CAS  PubMed  Google Scholar 

  38. Ferrari S, Torelli U, Selleri L, Donelli A, Venturelli D, Narni F, Moretti L, Torelli G (1985) Study of the levels of expression of two oncogenes, c-myc and c-myb, in acute and chronic leukemias of both lymphoid and myeloid lineage. Leuk Res 9:833–842

    Article  CAS  PubMed  Google Scholar 

  39. Gamble DA, Schwab R, Weksler ME, Szabo P (1990) Decreased steady state c-myc mRNA in activated T cell cultures from old humans is caused by a smaller proportion of T cells that transcribe the c-myc gene. J Immunol 144:3569–3573

    CAS  PubMed  Google Scholar 

  40. Song L, Stephens JM, Kittur S, Collins GD, Nagel JE, Pekala PH, Adler WH (1992) Expression of c-fos, c-jun and jun B in peripheral blood lymphocytes from young and elderly adults. Mech Ageing Dev 65:149–156

    Article  CAS  PubMed  Google Scholar 

  41. Shan X, Luo H, Chen H, Daloze P, St-Louis G, Wu J (1993) The effect of rapamycin on c-jun expression in human lymphocytes. Clin Immunol Immunopathol 69:314–317

    Article  CAS  PubMed  Google Scholar 

  42. DePalma L, Brown E, Baker R (1998) c-fos and c-jun mRNA expression in activated cord and adult lymphocytes: an analysis by Northern hybridization. Vox Sang 75:134–138

    Article  CAS  PubMed  Google Scholar 

  43. King LB, Tolosa E, Lenczowski JM, Lu F, Lind EF, Hunziker R, Petrie HT, Ashwell JD (1999) A dominant-negative mutant of c-Jun inhibits cell cycle progression during the transition of CD4(−)CD8(−) to CD4(+)CD8(+) thymocytes. Int Immunol 11:1203–1216

    Article  CAS  PubMed  Google Scholar 

  44. Trop-Steinberg S, Azar Y, Or R (2013) Early cell-cycle gene expression in T-cells after hematopoietic stem cell transplantation. Transpl Immunol 29:146–154. doi:10.1016/j.trim.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  45. Kern JA, Reed JC, Daniele RP, Nowell PC (1986) The role of the accessory cell in mitogen-stimulated human T cell gene expression. J Immunol 137:764–769

    CAS  PubMed  Google Scholar 

  46. Kowalski RJ, Mannon RB et al (2006) Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 82:663

    Article  PubMed  Google Scholar 

  47. Kowalski R, Post D, Schneider MC, Britz J, Thomas J, Deierhoi M, Lobashevsky A, Redfield R, Schweitzer E, Heredia A, Reardon E, Davis C, Bentlejewski C, Fung J, Shapiro R, Zeevi A (2003) Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transplant 17:77–88

    Article  PubMed  Google Scholar 

  48. Sanchez-Velasco P, Rodrigo E, Valero R, Ruiz JC, Fernandez-Fresnedo G, Lopez-Hoyos M, Pinera C, Palomar R, Leyva-Cobian F, Arias M (2008) Intracellular ATP concentrations of CD4 cells in kidney transplant patients with and without infection. Clin Transplant 22:55–60

    PubMed  Google Scholar 

  49. Gesundheit B, Budowski E, Israeli M, Shapira MY, Resnick IB, Bringer R, Azar Y, Samuel S, Dray L, Amar A, Kristt D, Or R (2010) Assessment of CD4 T-lymphocyte reactivity by the Cylex ImmuKnow assay in patients following allogeneic hematopoietic SCT. Bone Marrow Transpl 45:527–533

    Article  CAS  Google Scholar 

  50. Sayegh MH, Turka LA (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen TN, Kim LJ, Walters RD, Drullinger LF, Lively TN, Kugel JF, Goodrich JA (2010) The C-terminal region of human NFATc2 binds cJun to synergistically activate interleukin-2 transcription. Mol Immunol 47:2314–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naito T, Tanaka H, Naoe Y, Taniuchi I (2011) Transcriptional control of T-cell development. Int Immunol 23:661–668

    Article  CAS  PubMed  Google Scholar 

  53. Katoh M, Igarashi M, Fukuda H, Nakagama H (2013) Cancer genetics and genomics of human FOX family genes. Cancer Lett 328:198–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this paper wish to thank the staff at the bone marrow transplant outpatient clinic for their assistance in the collection of blood samples and clinical follow-up data and the staff members at our laboratory. We also thank Aviva Yoselis of Israel Health Consulting for her editorial assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Or.

Appendix: Evaluation of CD3+ T-cell purity

Appendix: Evaluation of CD3+ T-cell purity

Flow cytometry analysis of the enriched cells after the RosetteSep cocktail showed a CD3+ T-cell purity of 95–97 %.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trop-Steinberg, S., Azar, Y., Bringer, R. et al. Myc and AP-1 expression in T cells and T-cell activation in patients after hematopoietic stem cell transplantation. Clin Exp Med 15, 189–203 (2015). https://doi.org/10.1007/s10238-014-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0285-6

Keywords

Navigation