Skip to main content

Advertisement

Log in

Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

API:

Average peritumoral intensity

CSF:

Cerebrospinal fluid

FEM:

Finite element methods

GM:

Gray matter

mOS:

Median overall survival

MTL:

Multiple-tissue-layer model

GBM:

Glioblastoma

PEEK:

Polyetheretherketone

RH:

Realistic head

SR:

Skull remodeling

TMZ:

Temozolomide

TTFields:

Tumor treating fields

WM:

White matter

References

  • Ballo MT, Urman N, Lavy-Shahaf G, Grewal J, Bomzon Z, Toms S (2019) Correlation of tumor treating fields dosimetry to survival outcomes in newly diagnosed glioblastoma: a large-scale numerical simulation-based analysis of data from the phase 3 EF-14 randomized trial. Int J Radiat Oncol Biol Phys 104:1106–1113

    Article  Google Scholar 

  • Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Mikkelsen T, Phuphanich S, Ashby LS, Degroot J, Gattamaneni R, Cher L, Rosenthal M, Payer F, Jürgensmeier JM, Jain RK, Sorensen AG, Xu J, Liu Q, Van Den Bent M (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31:3212–3218

    Article  Google Scholar 

  • Benson L (2018) Tumor treating fields technology: alternating electric field therapy for the treatment of solid tumors. Semin Oncol Nurs 34:137–150

    Article  Google Scholar 

  • Bomzon Z, Hershkovich HS, Urman N, Chaudhry A, Garcia-Carracedo D, Korshoej AR, Weinberg U, Wenger C, Miranda P, Wasserman Y, Kirson ED, Yoram (2016) Using computational phantoms to improve delivery of Tumor Treating Fields (TTFields) to patients. Annu Int Conf IEEE Eng Med Biol Soc 2016:6461–6464

    Google Scholar 

  • Carrieri FA, Smack C, Siddiqui I, Kleinberg LR, Tran PT (2020) Tumor treating fields: at the crossroads between physics and biology for cancer treatment. Front Oncol 10:575992

    Article  Google Scholar 

  • Ceresoli GL, Aerts JG, Dziadziuszko R, Ramlau R, Cedres S, Van Meerbeeck JP, Mencoboni M, Planchard D, Chella A, Crinò L, Krzakowski M, Rüssel J, Maconi A, Gianoncelli L, Grosso F (2019) Tumour treating fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): a multicentre, single-arm phase 2 trial. Lancet Oncol 20:1702–1709

    Article  Google Scholar 

  • Gentilal N, Miranda PC (2020) Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution. Comput Methods Programs Biomed 196:105706

    Article  Google Scholar 

  • Gentilal N, Salvador R, Miranda PC (2019) Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 64:225008

    Article  Google Scholar 

  • Giladi M, Schneiderman RS, Porat Y, Munster M, Itzhaki A, Mordechovich D, Cahal S, Kirson ED, Weinberg U, Palti Y (2014a) Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields. Pancreatology 14:54–63

    Article  Google Scholar 

  • Giladi M, Weinberg U, Schneiderman RS, Porat Y, Munster M, Voloshin T, Blatt R, Cahal S, Itzhaki A, Onn A, Kirson ED, Palti Y (2014b) Alternating electric fields (tumor-treating fields therapy) can improve chemotherapy treatment efficacy in non-small cell lung cancer both in vitro and in vivo. Semin Oncol 41(Suppl 6):S35-41

    Article  Google Scholar 

  • Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ Jr, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31:4085–4091

    Article  Google Scholar 

  • Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  Google Scholar 

  • Jay-Jiguang Zhu RTOD, Samuel Goldlust ZR (2020) CTNI-77-EF-19, a post-approval registry study of tumor treating fields (TTFields) o recurrent glioblastoma (rGBM). Neuro-Oncology 22:ii60

  • Karanam NK, Srinivasan K, Ding L, Sishc B, Saha D, Story MD (2017) Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines. Cell Death Dis 8:e2711

    Article  Google Scholar 

  • Karanam NK, Story MD (2020) An overview of potential novel mechanisms of action underlying tumor treating fields-induced cancer cell death and their clinical implications. Int J Radiat Biol 1–11

  • Kesari S, Ram Z (2017) Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: a post hoc analysis of the EF-14 trial. CNS Oncol 6:185–193

    Article  Google Scholar 

  • Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64:3288–3295

    Article  Google Scholar 

  • Korshoej AR, Saturnino GB, Rasmussen LK, Von Oettingen G, Sørensen JC, Thielscher A (2016) Enhancing predicted efficacy of tumor treating fields therapy of glioblastoma using targeted surgical craniectomy: a computer modeling study. PLoS ONE 11:e0164051

    Article  Google Scholar 

  • Korshoej AR, Mikic N, Hansen FL, Saturnino GB, Thielscher A, Bomzon ZE (2019a) Enhancing tumor treating fields therapy with skull-remodeling surgery. The role of finite element methods in surgery planning. Conference proceedings: … annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Ann Conf 2019:6995–6997

    Google Scholar 

  • Korshoej AR, Sorensen JCH, Von Oettingen G, Poulsen FR, Thielscher A (2019b) Optimization of tumor treating fields using singular value decomposition and minimization of field anisotropy. Phys Med Biol 64:04NT03

    Article  Google Scholar 

  • Korshoej AR, Hansen FL, Thielscher A, Von Oettingen GB, Sørensen JCH (2017) Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: a computer modeling study. PLoS One 12:e0179214

  • Korshoej AR, Hansen FL, Mikic N, Von Oettingen G, Sorensen JCH, Thielscher A (2018) Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations. PLoS One 13:e0201957

  • Korshoej AR, Lukacova S, Lassen-Ramshad Y, Rahbek C, Severinsen KE, Guldberg TL, Mikic N, Jensen MH, Cortnum SOS, Von Oettingen G, Sorensen JCH (2020) OptimalTTF-1: enhancing tumor treating fields therapy with skull remodeling surgery. A clinical phase I trial in adult recurrent glioblastoma. Neurooncol Adv 2:vdaa121

  • Kuang X-J (2006) Discussion on dielectric constant of metal. J Sichuan Univ Sci Eng 2:75–78

    Google Scholar 

  • Lang ST, Gan LS, Mclennan C, Monchi O, Kelly JJP (2020) Impact of peritumoral edema during tumor treatment field therapy: a computational modelling study. IEEE Trans Biomed Eng 67:3327–3338

    Article  Google Scholar 

  • Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D’andre SD, Iwamoto FM, Dropcho EJ, Moshel YA, Walter KA, Pillainayagam CP, Aiken R, Chaudhary R, Goldlust SA, Bota DA, Duic P, Grewal J, Elinzano H, Toms SA, Lillehei KO, Mikkelsen T, Walbert T, Abram SR, Brenner AJ, Brem S, Ewend MG, Khagi S, Portnow J, Kim LJ, Loudon WG, Thompson RC, Avigan DE, Fink KL, Geoffroy FJ, Lindhorst S, Lutzky J, Sloan AE, Schackert G, Krex D, Meisel HJ, Wu J, Davis RP, Duma C, Etame AB, Mathieu D, Kesari S, Piccioni D, Westphal M, Baskin DS, New PZ, Lacroix M, May SA, Pluard TJ, Tse V, Green RM, Villano JL, Pearlman M, Petrecca K, Schulder M, Taylor LP, Maida AE, Prins RM, Cloughesy TF, Mulholland P, Bosch ML (2018) First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16:142

    Article  Google Scholar 

  • Miranda PC, Mekonnen A, Salvador R, Basser PJ (2014) Predicting the electric field distribution in the brain for the treatment of glioblastoma. Phys Med Biol 59:4137–4147

    Article  Google Scholar 

  • Mrugala MM, Engelhard HH, Dinh Tran D, Kew Y, Cavaliere R, Villano JL, Annenelie Bota D, Rudnick J, Love Sumrall A, Zhu JJ, Butowski N (2014) Clinical practice experience with NovoTTF-100A system for glioblastoma: the patient registry dataset (PRiDe). Semin Oncol 41(Suppl 6):S4-s13

    Article  Google Scholar 

  • Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD (2018) Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res 24:266–275

    Article  Google Scholar 

  • Narita Y, Arakawa Y, Yamasaki F, Nishikawa R, Aoki T, Kanamori M, Nagane M, Kumabe T, Hirose Y, Ichikawa T, Kobayashi H, Fujimaki T, Goto H, Takeshima H, Ueba T, Abe H, Tamiya T, Sonoda Y, Natsume A, Kakuma T, Sugita Y, Komatsu N, Yamada A, Sasada T, Matsueda S, Shichijo S, Itoh K, Terasaki M (2019) A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro Oncol 21:348–359

    Article  Google Scholar 

  • Onken J, Goerling U, Heinrich M, Pleissner S, Krex D, Vajkoczy P, Misch M (2019) Patient reported outcome (PRO) among high-grade glioma patients receiving TTFields treatment: a two center observational study. Front Neurol 10:1026

    Article  Google Scholar 

  • Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ (2020) Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer

  • Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  Google Scholar 

  • Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbaly V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202

    Article  Google Scholar 

  • Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, Di Meco F, Lieberman F, Zhu JJ, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson ED, Lavy-Shahaf G, Weinberg U, Kim CY, Paek SH, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi ME, Ram Z (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316

    Article  Google Scholar 

  • Sun YS (2018) Direct-current electric field distribution in the brain for tumor treating field applications: a simulation study. Comput Math Methods Med 2018:3829768

    Article  Google Scholar 

  • Thielscher A, Antunes A, Saturnino G.B (2015) Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? IEEE EMBS 2015, Milano, Italy

  • Trusheim J, Dunbar E, Battiste J, Iwamoto F, Mohile N, Damek D, Bota DA, Connelly J (2017) A state-of-the-art review and guidelines for tumor treating fields treatment planning and patient follow-up in glioblastoma. CNS Oncol 6:29–43

    Article  Google Scholar 

  • Voloshin T, Munster M, Blatt R, Shteingauz A, Roberts PC, Schmelz EM, Giladi M, Schneiderman RS, Zeevi E, Porat Y, Bomzon Z, Urman N, Itzhaki A, Cahal S, Kirson ED, Weinberg U, Palti Y (2016) Alternating electric fields (TTFields) in combination with paclitaxel are therapeutically effective against ovarian cancer cells in vitro and in vivo. Int J Cancer 139:2850–2858

    Article  Google Scholar 

  • Vymazal J, Wong ET (2014) Response patterns of recurrent glioblastomas treated with tumor-treating fields. Semin Oncol 41(Suppl 6):S14-24

    Article  Google Scholar 

  • Weller M, Tabatabai G, Kästner B, Felsberg J, Steinbach JP, Wick A, Schnell O, Hau P, Herrlinger U, Sabel MC, Wirsching HG, Ketter R, Bähr O, Platten M, Tonn JC, Schlegel U, Marosi C, Goldbrunner R, Stupp R, Homicsko K, Pichler J, Nikkhah G, Meixensberger J, Vajkoczy P, Kollias S, Hüsing J, Reifenberger G, Wick W (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21:2057–2064

    Article  Google Scholar 

  • Wenger C, Salvador R, Basser PJ, Miranda PC (2015) Modeling tumor treating fields (TTFields) application within a realistic human head model. Annu Int Conf IEEE Eng Med Biol Soc 2015:2555–2558

    Google Scholar 

  • Wenger C, Miranda PC, Salvador R, Thielscher A, Bomzon Z, Giladi M, Mrugala MM, Korshoej AR (2018) A review on tumor-treating fields (TTFields): clinical implications inferred from computational modeling. IEEE Rev Biomed Eng 11:195–207

    Article  Google Scholar 

  • Westphal M, Ylä-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, Kinley J, Kay R, Ram Z (2013) Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 14:823–833

    Article  Google Scholar 

  • Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, Geletneky K, Braun C, Hartung JG, Reuter D, Metz MW, Bach F, Pietsch T (2015) A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 51:522–532

    Article  Google Scholar 

  • Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, Brandes AA, Taal W, Domont J, Idbaih A, Campone M, Clement PM, Stupp R, Fabbro M, Le Rhun E, Dubois F, Weller M, Von Deimling A, Golfinopoulos V, Bromberg JC, Platten M, Klein M, Van Den Bent MJ (2017) Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med 377:1954–1963

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yuge Yao from the Department of Energy and Power Engineering, Tsinghua University for revising the methods and language editings.

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 82151302); Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program (Grant No. 20191080597, 2019ZLH101).

Author information

Authors and Affiliations

Authors

Contributions

XY and PL designed the research; XY and XW conducted the simulation and calculation; XY and PL wrote and revised the article; CH supervised the study protocol and provide guidance in model validation; WM, YW, and HX provided clinical expertise in TTFields application and SR surgery; LL and CH provide mechanical expertise in TTFields design; CH, WM and LL provided funding and correspondence to this article. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Chunhua Hu, Luming Li or Wenbin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Written consent was acquired on the open access and publishment of his imaging data (www.simnibs.org).

Consent for publication

All authors agreed on the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2941 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, P., Xing, H. et al. Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomech Model Mechanobiol 21, 1133–1144 (2022). https://doi.org/10.1007/s10237-022-01580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01580-7

Keywords

Navigation