Skip to main content
Log in

Soft palate muscle activation: a modeling approach for improved understanding of obstructive sleep apnea

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A Hill model-based phenomenological method for muscle activation was used to investigate defectiveness of the palatal muscle tone during sleep for obstructive sleep apnea (OSA) patients. Based on the stretch–stress characteristic of muscle activation when the eccentric contraction is considered, a specifically defined phenomenological strain-energy function was used, as well as the Holzapfel-type strain-energy function for the passive part. A continuum mechanical framework, including the stress tensor and elasticity tensor, was obtained, based on the defined strain-energy function. The model parameters were obtained by fitting the constitutive model to experimental test data. Three-dimensional patient-specific geometry was modeled, accounting for the muscle tissue layer and based on the quantitative histology study of the soft palate. Anatomically representative boundary conditions for the finite element calculation were also considered. Palatal muscle activation level (electromyographic data) versus the negative pressure was defined in the simulations, and the patients’ activation level was set to be lower than for the healthy people. The simulation results showed that reduced in activation level for the patients causes a less negative closing pressure, and this makes the soft palate more prone to collapse. In addition, if we account for the passive–active transfer displayed as the muscle contraction corresponding to the neurogenic reflex in the soft palate, the collapse is prevented. This numerical representation of the reduced activation for the OSA patients may provide increased understanding of OSA physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ (2016) Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep 39(12):2091–2100

    Article  Google Scholar 

  • Berry DA, Moon JB, Kuehn DP (1999) A finite element model of the soft palate. Cleft Palate Craniofacial J 36(3):217–223

    Article  Google Scholar 

  • Bilston LE, Gandevia SC (2014) Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. J Appl Physiol 116(3):314–324

    Article  Google Scholar 

  • Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38(4):657–665

    Article  Google Scholar 

  • Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE (2015) Tongue stiffness is lower in patients with obstructive sleep apnea during wakefulness compared with matched control subjects. Sleep 38(4):537–544

    Article  Google Scholar 

  • Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ (2016) Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. Sleep 39(3):511–521

    Article  Google Scholar 

  • Cheng S, Gandevia SC, Green M, Sinkus R, Bilston LE (2011) Viscoelastic properties of the tongue and soft palate using MR elastography. J Biomech 44(3):450–454

    Article  Google Scholar 

  • Choi DY, Bae JH, Youn KH, Kim HJ, Hu KS (2014) Anatomical considerations of the longitudinal pharyngeal muscles in relation to their function on the internal surface of pharynx. Dysphagia 29(6):722–730

    Article  Google Scholar 

  • Deegan PC, McNicholas WT (1995) Pathophysiology of obstructive sleep apnoea. Eur Respir J 8(7):1161–1178

    Article  Google Scholar 

  • Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behaviour of skeletal muscle. J Mech Phys Solids 59(3):625–636

    Article  MathSciNet  MATH  Google Scholar 

  • Ettema SL, Kuehn DP (1994) A quantitative histologic study of the normal human adult soft palate. J Speech Lang Hear Res 37(2):303–313

    Article  Google Scholar 

  • Fogel RB, Malhotra A, Pillar G, Edwards JK, Beauregard J, Shea SA, White DP (2001) Genioglossal activation in patients with obstructive sleep apnea versus control subjects: mechanisms of muscle control. Am J Respir Crit Care Med 164(11):2025–2030

    Article  Google Scholar 

  • Friedman M, Vidyasagar R, Bliznikas D, Joseph NJ (2006) Patient selection and efficacy of pillar implant technique for treatment of snoring and obstructive sleep apnea/hypopnea syndrome. Otolaryngol Head Neck Surg 134(2):187–196

    Article  Google Scholar 

  • Göktepe S, Menzel A, Kuhl E (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39

    Article  MathSciNet  MATH  Google Scholar 

  • Han D, Ye J, Wang Q, Yang J, Lin Y, Wang J (2002) Determining the site of airway obstruction in obstructive sleep apnea with airway pressure measurements during sleep. Laryngoscope 112(11):2081–2085

    Article  Google Scholar 

  • Hawkins D, Bey M (1994) A comprehensive approach for studying muscle-tendon mechanics. J Biomech Eng 116:51

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics. a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Huang MH, Lee ST, Rajendran K (1997) Structure of the musculus uvulae: functional and surgical implications of an anatomic study. Cleft Palate Craniofacial J 34(6):466–474

    Article  Google Scholar 

  • Huang Y, Malhotra A, White DP (2005) Computational simulation of human upper airway collapse using a pressure-/state-dependent model of genioglossal muscle contraction under laminar flow conditions. J Appl Physiol 99(3):1138–1148

    Article  Google Scholar 

  • Hunter PJ, Nash MP, Sands GB (1997) Computational electromechanics of the heart. Comput Biol Heart 12:347–407

    MATH  Google Scholar 

  • Inouye JM, Pelland CM, Lin KY, Borowitz KC, Blemker SS (2015) A computational model of velopharyngeal closure for simulating cleft palate repair. J Craniofacial Surg 26(3):658–662

    Article  Google Scholar 

  • Johansson T, Meier P, Blickhan R (2000) A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206(1):131–149

    Article  Google Scholar 

  • Keenan B, Wang S, Leinwand SE, Pack A, Schwab RJ, Feng Y (2017) Dynamic upper airway characteristics during awake respiration in obese subjects with and without obstructive sleep apnea. Am J Respir Crit Care Med 195:A7269

    Article  Google Scholar 

  • Kuehn DP, Kahane JC (1990) Histologic study of the normal human adult soft palate. Cleft Palate Craniofacial J 27(1):26–35

    Article  Google Scholar 

  • Marcucci L, Reggiani C, Natali AN, Pavan PG (2017) From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers. Biomech Model Mechanobiol 16(6):1833–1843

    Article  Google Scholar 

  • McGinley BM, Schwartz AR, Schneider H, Kirkness JP, Smith PL, Patil SP (2008) Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea. J Appl Physiol 105(1):197–205

    Article  Google Scholar 

  • Mezzanotte WS, Tangel DJ, White DP (1992) Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Investig 89(5):1571

    Article  Google Scholar 

  • Mezzanotte WS, Tangel DJ, White DP (1996) Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls. Am J Respir Crit Care Med 153(6):1880–1887

    Article  Google Scholar 

  • Mortimore IL, Douglas NJ (1997) Palatal muscle emg response to negative pressure in awake sleep apneic and control subjects. Am J Respir Crit Care Med 156(3):867–873

    Article  Google Scholar 

  • Mortimore IL, Mathur R, Douglas NJ (1995) Effect of posture, route of respiration, and negative pressure on palatal muscle activity in humans. J Appl Physiol 79(2):448–454

    Article  Google Scholar 

  • Moxness MHS, Wülker F, Skallerud BH, Nordgård S (2018) Simulation of the upper airways in patients with obstructive sleep apnea and nasal obstruction: a novel finite element method. Laryngoscope Investig Otolaryngol 3(2):82–93

    Article  Google Scholar 

  • Nishino T (2000) Physiological and pathophysiological implications of upper airway reflexes in humans. Jpn J Physiol 50(1):3–14

    Article  Google Scholar 

  • Odegard GM, Donahue TLH, Morrow DA, Kaufman KR (2008) Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J Biomech Eng 130(6):061017

    Article  Google Scholar 

  • Patil SP, Schneider H, Schwartz AR, Smith PL (2007) Adult obstructive sleep apnea: pathophysiology and diagnosis. Chest 132(1):325–337

    Article  Google Scholar 

  • Prot V, Skallerud B (2009) Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput Mech 43(3):353–368

    Article  MATH  Google Scholar 

  • Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4):459–468

    Article  Google Scholar 

  • Roux A, Laporte S, Lecompte J, Gras LL, Iordanoff I (2016) Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the discrete element method. J Biomech 49(2):252–258

    Article  Google Scholar 

  • Sera T, Uesugi K, Yagi N, Yokota H (2015) Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model. Comput Methods Biomech Biomed Eng 18(13):1427–1435

    Article  Google Scholar 

  • Skallerud B, Prot V, Nordrum IS (2011) Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech Model Mechanobiol 10(1):11–26

    Article  Google Scholar 

  • Sung SJ, Jeong SJ, Yu YS, Hwang CJ, Pae EK (2006) Customized three-dimensional computational fluid dynamics simulation of the upper airway of obstructive sleep apnea. Angle Orthodontist 76(5):791–799

    Google Scholar 

  • Tang CY, Zhang G, Tsui CP (2009) A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J Biomech 42(7):865–872

    Article  Google Scholar 

  • Tangel DJ, Mezzanotte WS, Sandberg EJ, White DP (1992) Influences of NREM sleep on the activity of tonic vs. inspiratory phasic muscles in normal men. J Appl Physiol 73(3):1058–1066

    Article  Google Scholar 

  • Tangel DJ, Mezzanotte WS, White DP (1995) Influences of NREM sleep on activity of palatoglossus and levator palatini muscles in normal men. J Appl Physiol 78(2):689–695

    Article  Google Scholar 

  • Vita RD, Grange R, Nardinocchi P, Teresi L (2017) Mathematical model for isometric and isotonic muscle contractions. J Theor Biol 425:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Elghobashi S (2014) On locating the obstruction in the upper airway via numerical simulation. Respir Physiol Neurobiol 193:1–10

    Article  Google Scholar 

  • White DP (2005) Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med 172(11):1363–1370

    Article  Google Scholar 

  • Zhao M, Barber T, Cistulli P, Sutherland K, Rosengarten G (2013a) Computational fluid dynamics for the assessment of upper airway response to oral appliance treatment in obstructive sleep apnea. J Biomech 46(1):142–150

    Article  Google Scholar 

  • Zhao M, Barber T, Cistulli PA, Sutherland K, Rosengarten G (2013b) Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid–structure interaction. J Biomech 46(15):2586–2592

    Article  Google Scholar 

Download references

Funding

This study was funded in part from a grant from the Research Council of Norway and a grant from NTNU, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Helge Skallerud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The analytical solution for the created constitutive model is achieved in the incompressible case. In the incompressible case, the strain-energy function (7) can be rewritten as

$$\begin{aligned} \begin{aligned} \Psi =\,&\underset{\mathrm {passive}}{\underbrace{c(I_{1}-3)+\left\{ \begin{array}{ll} \frac{k_{1}}{2k_{2}} [{e}^{{k}_{2}(I_{4}-1)^{2}}-1]&{} \mathrm {if}\quad I_{4}\ge 1\\ 0&{}\mathrm {if}\quad I_{4}<1 \end{array}\right. }}\\&+\,\underset{\mathrm {active}}{\underbrace{f(I_{4s})}}+ \underset{\mathrm {penalty}}{\underbrace{p(J-1)}}, \end{aligned} \end{aligned}$$
(35)

where, p is Lagrange multiplier. The detailed description for the active part reads

$$\begin{aligned} f(I_{4s})=\int _{I_\mathrm {4min}}^{I_{4}}g(I_{4})dI_{4}, \end{aligned}$$
(36)

with

$$\begin{aligned} g(I_{4})=\left\{ \begin{array}{ll} \frac{1}{2}P _{\mathrm {max}}^{\mathrm {act}}\frac{1}{\sqrt{I_{4}}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}-I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) &{} \mathrm {if}\quad I_{4}\ge I_{4\mathrm {min}} \\ 0&{} \mathrm {if}\quad I_{4}< I_{4\mathrm {min}} \end{array}\right. \end{aligned}$$
(37)

Note that, since the active part is assumed incompressible, the constant parameters \(\bar{I}_\mathrm {4min}\) and \(\bar{I}_\mathrm {4opt}\) have the same value as \(I_\mathrm {4min}\) and \(I_\mathrm {4opt}\). Then, being similar to Eq. (10) and Eq. (15), the second Piola–Kirchhoff stress in the incompressible case reads

$$\begin{aligned} \begin{aligned} \mathbf {S}=\,&\mathbf {S}_{\mathrm {pas}}+\mathbf {S}_{\mathrm {act}}+\mathbf {S}_{\mathrm {pen}}\\ =\,&2c\mathbf {I} +2k_{1}(\bar{I}_{4}-1)e^{k_{2}(\bar{I}_{4}-1)^{2}}\mathbf {a}_{0}\otimes \mathbf {a}_{0}\\&+\,P _{\mathrm {max}}^{\mathrm {act}}\frac{1}{\sqrt{I_{4}}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\\&\quad \mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}-I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) \mathbf {a}_{0}\otimes \mathbf {a}_{0}\\ {}&+\,p\mathbf {C}^{-1}. \end{aligned} \end{aligned}$$
(38)

Based on Eq. (16)\(_{1}\) and \(J=1\) for the incompressible case, the Cauchy stress is calculated as

$$\begin{aligned} \begin{aligned} \varvec{\sigma }=\,&\mathbf {F}\mathbf {S}\mathbf {F}^\mathrm{T}\\ =\,&2c\mathbf {B}+2k_{1}(I_{4}-1)e^{k_{2}(I_{4}-1)^{2}} \mathbf {a}\otimes \mathbf {a}\\&+\,P _{\mathrm {max}}^{\mathrm {act}}\frac{1}{\sqrt{I_{4}}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\\&\quad \mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}- I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) \mathbf {a}\otimes \mathbf {a}\\ {}&+\,p\mathbf {I}. \end{aligned} \end{aligned}$$
(39)

Hence, setting the fiber direction as \(\mathbf {a}_{0}=[1,0,0]\) and defining the deformation gradient for uniaxial test in the fiber direction as

$$\begin{aligned} \mathbf {F}=\begin{bmatrix} \lambda&\quad 0&\quad 0\\ 0&\quad 1/\sqrt{\lambda }&\quad 0\\ 0&\quad 0&\quad 1/\sqrt{\lambda } \end{bmatrix}, \end{aligned}$$
(40)

the analytical solution for the uniaxial test can be achieved and fitted with the numerical simulation.

In addition, since \(\mathrm {tr}[\mathbf {a}\otimes \mathbf {a}]=I_{4}=\lambda _{\mathrm {fiber}}^{2}\) (\(\lambda _{\mathrm {fiber}}\) denotes the fiber stretch), the active Cauchy stress in the fiber direction in (39)\(_{3}\) is displayed as

$$\begin{aligned} \sigma _{\mathrm {fiber}}^{\mathrm {act}}= & {} P _{\mathrm {max}}^{\mathrm {act}}\frac{1}{\sqrt{I_{4}}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\nonumber \\&\mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}- I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) I_{4}. \end{aligned}$$
(41)

Then, the nominal stress (\(\mathbf {P}=J\mathbf {F}^{-1}\varvec{\sigma }\)) for the fiber activation part is deduced as

$$\begin{aligned} \begin{aligned} P_{\mathrm {fiber}}^{\mathrm {act}}=\,&\varvec{\sigma }_{\mathrm {fiber}}^{\mathrm {act}} /\lambda _{\mathrm {fiber}}\\ =\,&P _{\mathrm {max}}^{\mathrm {act}}\frac{I_{4}}{\sqrt{I_{4}}\lambda _{\mathrm {fiber}}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\\&\mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}- I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) \\ =&P _{\mathrm {max}}^{\mathrm {act}}\frac{I_\mathrm {4min}-I_{4}}{I_\mathrm {4min}-I_\mathrm {4opt}}\\&\mathrm {exp}\left( \frac{(2 I_\mathrm {4min}-I_{4}- I_\mathrm {4opt})(I_{4}-I_\mathrm {4opt})}{2(I_\mathrm {4min}-I_\mathrm {4opt})^{2}} \right) . \end{aligned} \end{aligned}$$
(42)

With this, for the constitutive parameters, satisfying fitting results to the experimental data used nominal stress can be achieved. This also explains how the added term, \(1/\sqrt{\bar{I}_{4}}\), in Eq. (9) works in the transformation between the nominal stress and Cauchy stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Prot, V.E. & Skallerud, B.H. Soft palate muscle activation: a modeling approach for improved understanding of obstructive sleep apnea. Biomech Model Mechanobiol 18, 531–546 (2019). https://doi.org/10.1007/s10237-018-1100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1100-1

Keywords

Navigation