Skip to main content
Log in

Holomorphic extension in holomorphic fiber bundles with (1, 0)-compactifiable fiber

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves \(R^{\bullet }\phi _{!}\mathcal {O}\) for the structure sheaf \(\mathcal {O}\) on the total space of a holomorphic fiber bundle \(\phi \) has canonical topology structures. Using the standard Čech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf \(R^{1}\phi _{!}\mathcal {O}\) and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, M., Samuelsson, H.: Koppelman Formulas and the \(\bar{\partial }\)-Equation on an Analytic Space. Institut Mittag–Leffler preprint Series, Vol. 31 (2008)

  2. Andreotti, A., Hill, D.: E.E. Levi convexity and the Hans Levy problem. Part I: reduction to vanishing theorems. Ann. Sc. Norm. Super Pisa 26, 325–363 (1972)

    Google Scholar 

  3. Bănică, C., Stănăşilă, O.: Algebraic Methods in the Global Theory of Complex Spaces. Wiley, New York (1976)

    Google Scholar 

  4. Bredon, G.E.: Sheaf Theory. Springer, New York (1997)

    Book  Google Scholar 

  5. Coltoiu, M., Ruppenthal, J.: On Hartogs extension theorem on \((n-1)\)-complete complex spaces. J. Reine Angew. Math. (Crelles J.) 637, 41–47 (2009). https://doi.org/10.1515/CRELLE.2009.089

    Article  MathSciNet  Google Scholar 

  6. Demailly, J.-P.: Complex Analytic and Differential Geometry (2012). https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  7. Dwilewicz, R.: Holomorphic extensions in complex fiber bundles. J. Math. Anal. Appl. 322, 556–565 (2006). https://doi.org/10.1016/j.jmaa.2005.09.044

    Article  MathSciNet  Google Scholar 

  8. Freudenthal, H.: Über die Enden topologischer Räume und Gruppen. Math. Z. 33, 692–713 (1931). https://doi.org/10.1007/BF01174375

    Article  MathSciNet  Google Scholar 

  9. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  10. Feklistov, S.: The Hartogs extension phenomenon in almost homogeneous algebraic varieties. Mat. Sb. 213(12), 109–136 (2022). https://doi.org/10.4213/sm9677

    Article  MathSciNet  Google Scholar 

  11. Feklistov, S., Shchuplev, A.: The Hartogs extension phenomenon in toric varieties. J. Geom. Anal. 31, 12034–12052 (2021). https://doi.org/10.1007/s12220-021-00710-4

    Article  MathSciNet  Google Scholar 

  12. Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall Inc, Englewood Cliffs (1965)

    Google Scholar 

  13. Grothendieck, A., Chaljub, O.: Topological Vector Spaces. Gordon and Breach, Notes on mathematics and its applications (1973)

  14. Harvey, R.: The theory of hyperfunctions on totally real subsets of complex manifolds with applications to extension problems. Am. J. Math. 91, 853–873 (1969). https://doi.org/10.2307/2373307

    Article  MathSciNet  Google Scholar 

  15. Iversen, B.: Cohomology of Sheaves. Universitext, Springer, Berlin, Heidelberg (1986)

    Book  Google Scholar 

  16. Kaup, L.: Eine Künnethformel für Fréchetgarben. Math. Z. 97(2), 158–168 (1967)

    Article  MathSciNet  Google Scholar 

  17. Marciniak, M.A.: Holomorphic extensions in toric varieties. Doctoral Dissertations, Ph. D. in Mathematics, Missouri (2009)

  18. Marciniak, M.A.: Holomorphic extensions in smooth toric surfaces. J. Geom. Anal. 22, 911–933 (2012). https://doi.org/10.1007/s12220-011-9219-7

    Article  MathSciNet  Google Scholar 

  19. Merker, J., Porten, E.: The Hartogs extension theorem on \((n-1)\)-complete complex spaces. J. Reine Angew. Math. 637, 23–39 (2009). https://doi.org/10.1515/CRELLE.2009.088

    Article  MathSciNet  Google Scholar 

  20. Øvrelid, N., Vassiliadou, S.: Hartogs extension theorems on Stein spaces. J. Geom. Anal. 20, 817–836 (2010). https://doi.org/10.1007/s12220-010-9134-3

    Article  MathSciNet  Google Scholar 

  21. Oda, T.: Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Springer, Berlin (1988)

    Google Scholar 

  22. Peschke, G.: The theory of ends. Nieuw Arch. Wiskunde 8, 1–12 (1990)

    MathSciNet  Google Scholar 

  23. Pietsch, A., Ruckle, W.H.: Nuclear Locally Convex Spaces. Springer, Berlin, Heidelberg (1972)

    Book  Google Scholar 

  24. Rao, S., Yang, S., Yang, X.: Dolbeault cohomologies of blowing up complex manifolds. J. Math. Pures Appl. 130, 68–92 (2019). https://doi.org/10.48550/arXiv.1712.06749

    Article  MathSciNet  Google Scholar 

  25. Serre, J. P.: Quelques problemes globaux relatifs aux varietes de Stein. In: Coll. Plus. Var. Bruxelles, pp. 57–68 (1953)

  26. Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Graduate Texts in Mathematics, Springer, New York (1999)

    Book  Google Scholar 

  27. Vîjîitu, V.: On Hartogs’ extension. Ann. Mat. Pura Appl. 201, 487–498 (2022). https://doi.org/10.1007/s10231-021-01125-2

  28. Voisin, C.: Hodge Theory and Complex Algebraic Geometry II. Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 75-02-2023-936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Feklistov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feklistov, S. Holomorphic extension in holomorphic fiber bundles with (1, 0)-compactifiable fiber. Annali di Matematica (2023). https://doi.org/10.1007/s10231-023-01412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10231-023-01412-0

Keywords

Mathematics Subject Classification

Navigation