Skip to main content
Log in

Operator estimates for the Neumann sieve problem

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a domain in \({\mathbb {R}}^n\), \(\Gamma \) be a hyperplane intersecting \(\Omega \), \(\varepsilon >0\) be a small parameter, and \(D_{k,\varepsilon }\), \(k=1,2,3\dots \) be a family of small “holes” in \(\Gamma \cap \Omega \); when \(\varepsilon \rightarrow 0\), the number of holes tends to infinity, while their diameters tends to zero. Let \({\mathscr {A}}_\varepsilon \) be the Neumann Laplacian in the perforated domain \(\Omega _\varepsilon =\Omega \setminus \Gamma _\varepsilon \), where \(\Gamma _\varepsilon =\Gamma \setminus (\cup _k D_{k,\varepsilon })\) (“sieve”). It is well-known that if the sizes of holes are carefully chosen, \({\mathscr {A}}_\varepsilon \) converges in the strong resolvent sense to the Laplacian on \(\Omega \setminus \Gamma \) subject to the so-called \(\delta '\)-conditions on \(\Gamma \cap \Omega \). In the current work we improve this result: under rather general assumptions on the shapes and locations of the holes we derive estimates on the rate of convergence in terms of \(L^2\rightarrow L^2\) and \(L^2\rightarrow H^1\) operator norms; in the latter case a special corrector is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In fact, one has even the property \(\zeta _{\varepsilon }=o(\sup _{k\in {\mathbb {N}}}\eta _{k,\varepsilon })\) as \(\varepsilon \rightarrow 0\) (which is stronger than (3.51)). However, the knowledge of this fact gives us no profits, since the convergence rate \(\sup _{k\in {\mathbb {N}}}\eta _{k,\varepsilon }\) appears later in the estimate for \(|{\mathfrak {a}}_{\varepsilon }[ {\mathscr {J}}_{\varepsilon }f,u]-{\mathfrak {a}}[f,{\mathscr {J}}'_{\varepsilon }u]|\).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Anné, C., Post, O.: Wildly perturbed manifolds: norm resolvent and spectral convergence. J. Spectr. Theory 11(1), 229–279 (2021). https://doi.org/10.4171/JST/340

    Article  MathSciNet  MATH  Google Scholar 

  3. Ansini, N.: The nonlinear sieve problem and applications to thin films. Asymptotic Anal. 39(2), 113–145 (2004). (https://content.iospress.com/articles/asymptotic-analysis/asy636)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Advanced Pub, Boston (1984)

    MATH  Google Scholar 

  5. Attouch,H., Picard, C.: Comportement limité de problèmes de transmission unilateraux à travers des grilles de forme quelconque. Rend. Semin. Mat., Torino, 45(1):71–85 (1987)

  6. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751–756 (2003). https://doi.org/10.4171/ZAA/1170

    Article  MATH  Google Scholar 

  7. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \) and \(\delta ^{\prime }\)-interactions on Lipschitz surfaces and chromatic numbers of associated partitions. Rev. Math. Phys. 26(8), 1450015 (2014). https://doi.org/10.1142/S0129055X14500159

    Article  MathSciNet  MATH  Google Scholar 

  8. Behrndt, J., Langer, M., Lotoreichik, V.: Schrödinger operators with \(\delta \) and \(\delta ^{\prime }\)-potentials supported on hypersurfaces. Ann. Henri Poincaré 14(2), 385–423 (2013). https://doi.org/10.1007/s00023-012-0189-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Birman, M.S., Suslina, T.A.: Second order periodic differential operators. Threshold properties and homogenization. St. Petersb. Math. J. 15(5), 639–714 (2004). https://doi.org/10.1090/S1061-0022-04-00827-1

    Article  MATH  Google Scholar 

  10. Birman, M.S., Suslina, T.A.: Homogenization with corrector term for periodic elliptic differential operators. St. Petersbg. Math. J. 17(6), 897–973 (2006). https://doi.org/10.1090/S1061-0022-06-00935-6

    Article  MATH  Google Scholar 

  11. Borisov, D.: Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: strange term. [math.AP], (2022). https://doi.org/10.48550/arXiv.2205.09490

  12. Borisov, D., Bunoiu, R., Cardone, G.: On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition. Ann. Henri Poincaré 11(8), 1591–1627 (2010). https://doi.org/10.1007/s00023-010-0065-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov, D., Bunoiu, R., Cardone, G.: Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics. Z. Angew. Math. Phys. 64(3), 439–472 (2013). https://doi.org/10.1007/s00033-012-0264-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Borisov, D., Cardone, G.: Homogenization of the planar waveguide with frequently alternating boundary conditions. J. Phys. A Math. Theor. 42(36), 365205 (2009). https://doi.org/10.1088/1751-8113/42/36/365205

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov, D., Cardone, G., Durante, T.: Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve. Proc. R. Soc. Edinb. Sect. A Math. 146(6):1115–1158, (2016). https://doi.org/10.1017/S0308210516000019

  16. Borisov, D., Cardone, G., Faella, L., Perugia, C.: Uniform resolvent convergence for strip with fast oscillating boundary. J. Differ. Equations 255(12), 4378–4402 (2013). https://doi.org/10.1016/j.jde.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Borisov, D.I., Križ, J.: Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit. Anal. Math. Phys. (2023). https://doi.org/10.1007/s13324-022-00765-8

  18. Borisov, D.I., Mukhametrakhimova, A.I.: Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition. Sb. Math. 212(8), 1068–1121 (2021). https://doi.org/10.1070/SM9435

    Article  MathSciNet  MATH  Google Scholar 

  19. Borisov, D.I., Mukhametrakhimova, A.I.: Norm convergence for problems with perforation along a given manifold with nonlinear Robin condition on boundaries of cavities. arXiv:2202.10767 [math.AP], (2022). https://doi.org/10.48550/arXiv.2202.10767

  20. Chechkina, A.G., D’Apice, C., De Maio, U.: Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition. J. Comput. Appl. Math. 376, 112802 (2020). https://doi.org/10.1016/j.cam.2020.112802

    Article  MathSciNet  MATH  Google Scholar 

  21. Cioranescu, D., Damlamian, A., Griso, G., Onofrei, D.: The periodic unfolding method for perforated domains and Neumann sieve models. J. Math. Pures Appl. 89(3), 248–277 (2008). https://doi.org/10.1016/j.matpur.2007.12.008

    Article  MathSciNet  MATH  Google Scholar 

  22. Damlamian, A.: Le problème de la passoire de Neumann. Rend. Semin. Mat. Torino 43:427–450, (1985)

  23. Del Vecchio, T.: The thick Neumann’s sieve. Ann. Mat. Pura Appl. IV. Ser. 147:363–402, (1987). https://doi.org/10.1007/BF01762424

  24. Gómez, D., Pérez, M. E., Shaposhnikova, T. A.: Spectral boundary homogenization problems in perforated domains with Robin boundary conditions and large parameters. In Integral methods in science and engineering. Progress in numerical and analytic techniques. Proceedings of the conference, IMSE, Bento Gonçalves, Rio Grande do Sul, Brazil, July 23–27, (2012), pp. 155–174. New York: Birkhäuser/Springer, (2013). https://doi.org/10.1007/978-1-4614-7828-7_11

  25. Griso, G.: Error estimate and unfolding for periodic homogenization. Asymptot. Anal. 40(3–4), 269–286 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Griso, G.: Interior error estimate for periodic homogenization. Anal. Appl. 4(1), 61–79 (2006). https://doi.org/10.1142/S021953050600070X

    Article  MathSciNet  MATH  Google Scholar 

  27. Herbst, I., Nakamura, S.: Schrödinger operators with strong magnetic fields: Quasi-periodicity of spectral orbits and topology. Differential operators and spectral theory. M. Sh. Birman’s 70th anniversary collection. Providence, RI: American Mathematical Society. Transl. Ser. Am. Math. Soc. 189(41), 105-123 (1999)

  28. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  29. Khrabustovskyi, A.: Homogenization of eigenvalue problem for Laplace-Beltrami operator on Riemannian manifold with complicated bubble-like microstructure. Math. Meth. Appl. Sci. 32(16), 2123–2137 (2009). https://doi.org/10.1002/mma.1128

    Article  MathSciNet  MATH  Google Scholar 

  30. Khrabustovskyi, A., Plum, M.: Operator estimates for homogenization of the Robin Laplacian in a perforated domain. J. Differ. Equations 338, 474–517 (2022). https://doi.org/10.1016/j.jde.2022.08.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Khrabustovskyi, A., Post, O.: Operator estimates for the crushed ice problem. Asymptotic Anal. 110(3–4), 137–161 (2018). https://doi.org/10.3233/ASY-181480

    Article  MathSciNet  MATH  Google Scholar 

  32. Khruslov, E.Y.: On the Neumann boundary problem in a domain with composite boundary. Math. USSR Sb. 12(4), 553–571 (1971)

    Article  MATH  Google Scholar 

  33. Lamberti, P.D., Provenzano, L.: On trace theorems for Sobolev spaces. Matematiche 75(1), 137–165 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Marchenko, V.A., Khruslov, E.Y.: Boundary value problems in domains with a fine-grained boundary. Naukova Dumka, Kiev (1974)

  35. Marchenko, V.A., Khruslov, E.Y.: Homogenization of Partial Differential Equations. Birkhäuser, Boston (2006)

    Book  MATH  Google Scholar 

  36. Marchenko, V.A., Suzikov, G.V.: The second boundary value problem in regions with a complex boundary. Mat. Sb. (N.S.), 69(1):35–60 (1966)

  37. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  38. Murat. F.: The Neumann sieve. Nonlinear variational problems. Int. Workshop, Elba/Italy 1983, Res. Notes Math. 127, 24–32 (1985)

  39. Onofrei, D.: The unfolding operator near a hyperplane and its application to the Neumann sieve model. Adv. Math. Sci. Appl. 16(1), 239–258 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Picard, C.: Analyse limite d’équations variationnelles dans un domaine contenant une grille. Modélisation Math. Anal. Numér. 21(2), 293–326 (1987). https://doi.org/10.1051/m2an/1987210202931

    Article  MathSciNet  MATH  Google Scholar 

  41. Post, O.: Spectral convergence of quasi-one-dimensional spaces. Ann. Henri Poincaré 7(5), 933–973 (2006). https://doi.org/10.1007/s00023-006-0272-x

    Article  MathSciNet  MATH  Google Scholar 

  42. Post, O.: Spectral Analysis on Graph-Like Spaces. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  43. Suslina, T.A.: Spectral approach to homogenization of elliptic operators in a perforated space. Rev. Math. Phys. 30(8), 1840016 (2018). https://doi.org/10.1142/S0129055X18400160

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhikov, V.V.: On operator estimates in homogenization theory. Dokl. Math. 72(1), 534–538 (2005)

    MATH  Google Scholar 

  45. Zhikov, V.V.: Spectral method in homogenization theory. Proc. Steklov Inst. Math. 250, 85–94 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Zhikov, V.V., Pastukhova, S.E.: On operator estimates for some problems in homogenization theory. Russ. J. Math. Phys. 12(4), 515–524 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Zhikov, V.V., Pastukhova, S.E.: Operator estimates in homogenization theory. Russ. Math. Surv. 71(3), 417–511 (2016). https://doi.org/10.1070/RM9710

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support by the Czech Science Foundation (GAČR) through the project 22-18739S and by the research program “Mathematical Physics and Differential Geometry” of the Faculty of Science of the University of Hradec Králové. The author thanks Jussi Behrndt and Vladimir Lotoreichik for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Khrabustovskyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrabustovskyi, A. Operator estimates for the Neumann sieve problem. Annali di Matematica 202, 1955–1990 (2023). https://doi.org/10.1007/s10231-023-01308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01308-z

Keywords

Mathematics Subject Classification

Navigation