Skip to main content
Log in

CFD-DEM Coupled Simulation of Broken Rock Mass Movement During Water Seepage in an Underground Goaf Reservoir

CFD-DEM gekoppelte Simulation der Bewegung der Bruchmassen während des Wasseraustritts aus einem Wasserreservoir im Alten Mann

Simulación acoplada CFD-DEM del movimiento de la masa de roca rota durante la filtración de agua en un reservorio subterráneo

CFD-DEM耦合模拟地下采空区水库渗水过程的破碎岩体运动

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Underground water reservoir (UWR) technology has been used to protect mine water resources. The main underground space for UWRs is the caving zone formed by longwall mining. Broken rock mass movement in the caving zone affects the porosity distribution and seepage characteristics during the UWR’s circulation, storage, and discharge. We used a fluid-solid coupled model, implemented in PFC3D and combined with Python, to simulate water seepage in the caving zone. The influence of particle size and fluid element size on the error of the simulation results was analysed. Then, we investigated the effect of seepage on broken rock mass porosity under different stress states. Simulations with various particle sizes and compaction stresses show that the average displacement of broken rock decreases exponentially with increased stress. Because large broken particles form the primary bearing structure in the model, it is mostly small particles that move under high-stress levels, so porosity is less affected. Larger particles also migrate if the compaction stress is low; this significantly changes the porosity and leads to roof uplift. Finally, we designed an engineering scale model based on our simulation method using the actual UWR situation in a coal mine.

Zusammenfassung

Die Technologie der untertägigen Wasserreservoirs (UWR) wird zum Schutz der Wasserressourcen im Bergbau eingesetzt. Der wichtigste untertägige Raum für UWRs ist die Bruchzone, die durch den Strebbau entsteht. Die Bewegung im Alten Mann beeinflusst die Porositätsverteilung und die Sickereigenschaften während der Wasserzirkulation, der Speicherung und der Entleerung des UWR. Zur Simulation des Fließverhaltens im Alten Mann wurde ein gekoppeltes Flüssigkeits-Feststoff-Modell verwendet, das in PFC3D implementiert und mit Python kombiniert wurde. Der Einfluss der Partikelgröße und der Fluid-Elementgröße auf den Fehler der Simulationsergebnisse wurden analysiert. Anschließend wurde die Auswirkung des Sickerwassers auf die Durchlässigkeit des Alten Mannes unter verschiedenen Spannungszuständen untersucht. Simulationen mit verschiedenen Korngrößen und Spannungszuständen zeigen, dass die durchschnittliche Massenverlagerung im Alten Mann mit zunehmender Spannung exponentiell abnimmt. Da im Modell große Bruchstücke die primäre Tragstruktur bilden, bewegen sich bei hohen Spannungen hauptsächlich kleine Partikel, so dass die Porosität weniger beeinflusst wird. Größere Partikel wandern bei niedrigen Druckspannungen; dies verändert die Porosität erheblich und führt zu einer Hebung der Firste. Schließlich wurde auf Grundlage der eingesetzten Simulationsmethode und der tatsächlichen UWR-Verhältnisse in einer Kohlengrube ein maßstäbliches Modell entwickelt.

Resumen

La tecnología de los depósitos de agua subterráneos (UWR) se ha utilizado para proteger los recursos hídricos de las minas. El principal espacio subterráneo para los UWR es la zona cavada formada por la minería de tajo largo. El movimiento de la masa de roca rota en la zona de espeleología afecta a la distribución de la porosidad y a las características de la filtración durante la circulación, el almacenamiento y la descarga del UWR. Utilizamos un modelo acoplado fluido-sólido, implementado en PFC3D y combinado con Python, para simular la filtración de agua en la zona cavada. Se analizó la influencia del tamaño de las partículas y del tamaño de los elementos del fluido en el error de los resultados de la simulación. A continuación, se investigó el efecto de la infiltración en la porosidad de la masa rocosa rota bajo diferentes estados de tensión. Las simulaciones con diversos tamaños de partículas y tensiones de compactación muestran que el desplazamiento medio de la roca rota disminuye exponencialmente con el aumento de la tensión. Dado que las partículas rotas de gran tamaño forman la principal estructura portante en el modelo, son sobre todo las partículas pequeñas las que se desplazan bajo niveles de tensión elevados, por lo que la porosidad se ve menos afectada. Las partículas más grandes también migran si el esfuerzo de compactación es bajo; esto cambia significativamente la porosidad y conduce al levantamiento del techo. Por último, diseñamos un modelo a escala de ingeniería basado en nuestro método de simulación utilizando la situación real de UWR en una mina de carbón.

摘要

地下水库(UWR)技术已被用于保护矿井水资源。地下水库的主要地下空间是长壁开采形成的冒落区。冒落区的破碎岩体运动影响地下水库水循环、储存和排泄过程的孔隙度分布和渗流特性。使用PFC3D及结合Python方法建立了流固耦合模型, 模拟冒落区渗水。分析了颗粒尺寸和流元大小对模拟误差的影响。研究了不同应力状态下渗流对破碎岩体孔隙度的影响。不同的颗粒大小和压实应力的模拟结果表明, 破碎岩石的平均位移随着应力增加而指数减小。由于大破碎颗粒形成了模型的主要承载结构, 高应力作用下移动的主要是小颗粒, 使孔隙率受影响较小。如果压实应力较低, 大颗粒也发生了位移, 将明显改变孔隙率, 导致顶板隆起。最后, 利用模拟方法, 建立了一个煤矿实际地下水库的工程规模模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282

    Article  Google Scholar 

  • Bai QS, Tu SH, Chen M, Zhang C (2016) Numerical modeling of coal wall spall in a longwall face. Int J Rock Mech Min 88:242–253

    Article  Google Scholar 

  • Bai QS, Tu SH, Zhang XG, Zhang C, Yuan Y (2014) Numerical modeling on brittle failure of coal wall in longwall face—a case study. Arab J Geosci 7(12):5067–5080

    Article  Google Scholar 

  • Chu T, Yu M, Jiang D (2017) Experimental investigation on the permeability evolution of compacted broken coal. Transport Porous Med 116(2):847–868

    Article  Google Scholar 

  • Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8):899–944

    Article  Google Scholar 

  • Dong S, Zheng L, Zhang X, Lin P (2014) Improved drag force model and its application in simulating nanofluid flow. Microfluid Nanofluid 17(2):253–261

    Article  Google Scholar 

  • Dudek M, Tajdus K, Misa R, Sroka A (2020) Predicting of land surface uplift caused by the flooding of underground coal mines—a case study. Int J Rock Mech Min 132:104377

    Article  Google Scholar 

  • Fan L, Liu S (2017) A conceptual model to characterize and model compaction behavior and permeability evolution of broken rock mass in coal mine gobs. Int J Coal Geol 172:60–70

    Article  Google Scholar 

  • Felice RD (1994) The voidage function for fluid–particle interaction systems. Int J Multiphas Flow 20(1):153–159

    Article  Google Scholar 

  • Gu D (2015) Theory framework and technological system of coal mine underground reservoir. J China Coal Soc 40(2):239–246 (In Chinese)

    Google Scholar 

  • Gu D (2013) Water resource and surface ecology protection technology of modern coal mining in China’s energy “Golden Triangle”. Eng Sci 15(4):102–107

    Google Scholar 

  • Itasca (2018) PFC (Particle Flow Code) Version 6. Itasca Consulting Group Inc., Minneapolis

    Google Scholar 

  • Jia Y, Xu B, Chi S, Xiang B, Zhou Y (2017) Research on the particle breakage of rockfill materials during triaxial tests. Int J Geomech 17(10):4017085

    Article  Google Scholar 

  • Jin LZ, Yao W, Zhang J (2010) CFD simulation of gas seepage regularity in goaf. J China Coal Soc 35(9):1476–1480

    Google Scholar 

  • Kafui KD, Thornton C, Adams MJ (2002) Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem Eng Sci 57(13):2395–2410

    Article  Google Scholar 

  • Karacan CO (2010) Prediction of porosity and permeability of caved zone in longwall gobs. Transport Porous Med 82(2):413–439

    Article  Google Scholar 

  • Kaur J, Alam MA (2016) Study on estimation of hydraulic conductivity of porous media using drag force model. Int J Innov Res Sci Eng Technol 2(3):853–859

    Google Scholar 

  • Li B, Ju F (2018) An experimental investigation into the compaction characteristic of granulated gangue backfilling materials modified with binders. Environ Earth Sci 77(7):284

    Article  Google Scholar 

  • Li B, Liang Y, Zhang L, Zou Q (2019) Experimental investigation on compaction characteristics and permeability evolution of broken coal. Int J Rock Mech Min 118:63–76

    Article  Google Scholar 

  • Li Q, Ju J, Cao Z, Gao F, Li J (2017) Suitability evaluation of underground reservoir technology based on the discriminant of the height of water conduction fracture zone. J China Coal Soc 42(8):2116–2124 (In Chinese)

    Google Scholar 

  • Li M, Zhang J, Zhou N, Huang Y (2017b) Effect of particle size on the energy evolution of crushed waste rock in coal mines. Rock Mech Rock Eng 50(5):1347–1354

    Article  Google Scholar 

  • Liu Q, Sun Y, Xu Z, Jiang S, Zhang P, Yang B (2019) Assessment of abandoned coal mines as urban reservoirs. Mine Water Environ 38(2):215–225

    Article  Google Scholar 

  • Ma D, Duan H, Li X, Li Z, Zhou Z, Li T (2019) Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn Undergr Sp Tech 91:102993

    Article  Google Scholar 

  • Manso J, Marcelino J, Caldeira L (2018) Crushing and oedometer compression of rockfill using DEM. Comput Geotech 101:11–22

    Article  Google Scholar 

  • Nguyen CD, Benahmed N, Ando E, Sibille L, Philippe P (2019) Experimental investigation of microstructural changes in soils eroded by suffusion using x-ray tomography. Acta Geotech 14(3):749–765

    Article  Google Scholar 

  • Nguyen TT, Indraratna B (2020) The energy transformation of internal erosion based on fluid-particle coupling. Comput Geotech 121:103475

    Article  Google Scholar 

  • Pappas DM, Mark C (1993) Behavior of simulated longwall gob material. US Dept of the Interior, Washington

    Google Scholar 

  • Palchik V (2003) Formation of fractured zones in overburden due to longwall mining. Environ Geol 44:28–38

    Article  Google Scholar 

  • Packham R, Cinar Y, Moreby R (2011) Simulation of an enhanced gas recovery field trial for coal mine gas management. Int J Coal Geol 85(3):247–256

    Article  Google Scholar 

  • Reta GL, Dong X, Su B, Hu X, Bo H, Wan H (2019) The influence of large scale phosphate mining on the water quality of the Huangbaihe River basin in China: dominant pollutants and spatial distributions. Mine Water Environ 38(2):366–377

    Article  Google Scholar 

  • Rubinstein GJ, Derksen JJ, Sundaresan S (2016) Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force. J Fluid Mech 788:576–601

    Article  Google Scholar 

  • Shao XQ, Chi SC, Tao Y, Zhou XX (2020) DEM simulation of the size effect on the wetting deformation of rockfill materials based on single-particle crushing tests. Comput Geotech 123:103429

    Article  Google Scholar 

  • Si H, Bi H, Li X, Yang C (2010) Environmental evaluation for sustainable development of coal mining in Qijiang, western China. Int J Coal Geol 81(3):163–168

    Article  Google Scholar 

  • Singh GSP, Singh UK (2011) Assessment of goaf characteristics and compaction in longwall caving. Min Technol 120(4):222–232

    Article  Google Scholar 

  • Sitharam TG, Vinod JS (2010) Evaluation of shear modulus and damping ratio of granular materials using discrete element approach. Geotech Geol Eng 28(5):591–601

    Article  Google Scholar 

  • Tao J, Tao H (2017) Factors affecting piping erosion resistance: revisited with a numerical modeling approach. Int J Geomech 17(11):4017097

    Article  Google Scholar 

  • Wang T, Yang C, Li J, Li J, Ma H (2017) Failure analysis of overhanging blocks in the walls of a gas storage salt cavern: a case study. Rock Mech Rock Eng 50(1):125–137

    Article  Google Scholar 

  • Wang BF, Sun KM, Liang B, Sun WJ (2019) Development and application of an experimental device for measuring storage coefficient in a coal mine underground reservoir. Arch Min Sci 64(4):655–670

    Google Scholar 

  • Wang H, Zhang B, Yu X, Xu N, Ye J (2020) Long-term stability and deformation behaviour of anhydrite mine-out for crude oil storage. Rock Mech Rock Eng 53(4):1719–1735

    Article  Google Scholar 

  • Wang X, You C (2011) Evaluation of drag force on a nonuniform particle distribution with a meshless method. Particuology 9(3):288–297

    Article  Google Scholar 

  • Wang X, Liu K, You C (2011) Drag force model corrections based on nonuniform particle distributions in multi-particle systems. Powder Technol 209:112–118

    Article  Google Scholar 

  • Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM. Powder Technol 217:409–417

    Article  Google Scholar 

  • Xia T, Zhou F, Wang X, Zhang Y, Li Y, Kang J (2016) Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–896

    Article  Google Scholar 

  • Xie HP, Hou ZM, Gao F, Zhou L, Gao YN (2015) A new technology of pumped-storage power in underground coal mine: principles, present situation and future. J China Coal Soc 40(5):965–972. [in Chinese]

    Google Scholar 

  • Xu BH, Yu AB (1997) Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52(16):2785–2809

    Article  Google Scholar 

  • Yao Q, Tang C, Xia Z, Liu X, Zhu L, Chong Z, Hui X (2020) Mechanisms of failure in coal samples from underground water reservoir. Eng Geol 267:105494

    Article  Google Scholar 

  • Yu B, Chen Z, Ding Q, Wang L (2016) Non-Darcy flow seepage characteristics of saturated broken rocks under compression with lateral constraint. Int J Min Sci Techno 26(6):1145–1151

    Article  Google Scholar 

  • Yuan L, Jiang Y, Wang K, Zhao Y, Hao X, Xu C (2018) Precision exploitation and utilization of closed/abandoned mine resources in China. J China Coal Soc 43(1):14–20 (In Chinese)

    Google Scholar 

  • Yang B, Yang T, Hu J (2021) Numerical simulation of non-darcy flow caused by cross-fracture water inrush, considering particle loss. Mine Water Environ 40(2):1–13

    Article  Google Scholar 

  • Zhang C, Tu S, Zhang L (2017) Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the hertz contact deformation principle. Transport Porous Med 119(3):739–754

    Article  Google Scholar 

  • Zhang C, Zhang L, Tu S, Hao D, Teng T (2018) Experimental and numerical study of the influence of gas pressure on gas permeability in pressure relief gas drainage. Transport Porous Med 124(3):995–1015

    Article  Google Scholar 

  • Zhang C, Zhang L (2019) Permeability characteristics of broken coal and rock under cyclic loading and unloading. Nat Resour Res 28(3):1055–1069

    Article  Google Scholar 

  • Zhang C, Tu S, Zhao Y (2019) Compaction characteristics of the caving zone in a longwall goaf: a review. Environ Earth Sci 78(1):27

    Article  Google Scholar 

  • Zhang C, Tu S, Zhang L, Bai Q, Yuan Yong, Wang F (2016) A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines. J Geophys Eng 13(2):181–193

    Article  Google Scholar 

  • Zhang C, Wang F, Bai Q (2021) Underground space utilization of coalmines in China: a review of underground water reservoir construction. Tunn Undergr Sp Tech 107:103657

    Article  Google Scholar 

  • Zhang C, Liu J, Zhao Y, Han P, Zhang L (2020a) Numerical simulation of broken coal strength influence on compaction characteristics in goaf. Nat Resour Res 29(4):1–17

    Article  Google Scholar 

  • Zhang F, Wang T, Liu F, Peng M, Furtney J, Zhang L (2020b) Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: implications to suffusion in gap-graded soils. Comput Geotech 124:103617

    Article  Google Scholar 

  • Zhao J, Konietzky H (2020) Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int J Coal Geol 229:103565

    Article  Google Scholar 

  • Zhao J, Yin L, Guo W (2018) Stress–seepage coupling of cataclastic rock masses based on digital image technologies. Rock Mech Rock Eng 51(8):2355–2372

    Article  Google Scholar 

  • Zhao L, Sun C, Yan P, Zhang Q, Wang S, Luo S, Mao Y (2019) Dynamic changes of nitrogen and dissolved organic matter during the transport of mine water in a coal mine underground reservoir: column experiments. J Contam Hydrol 223:103473

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Beijing Municipal Natural Science Foundation (8212032), the National Natural Science Foundation of China (U1910206, 52104155, 51874312), the Open Fund of State Key Laboratory of Water Resources Protection and Utilization in Coal Mining (WPUKFJJ2019-15), and the Fundamental Research Funds for the Central Universities (2021YQNY11). We also thank the anonymous reviewers for their constructive comments and suggestions on the draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cun Zhang or Qingsheng Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5551.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jia, S., Bai, Q. et al. CFD-DEM Coupled Simulation of Broken Rock Mass Movement During Water Seepage in an Underground Goaf Reservoir. Mine Water Environ 40, 1048–1060 (2021). https://doi.org/10.1007/s10230-021-00826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00826-7

Keywords

Navigation