Skip to main content

Advertisement

Log in

Studying Mine Pit Lake Systems Across Multiple Scales

多尺度规模的矿坑湖系统研究

Untersuchung von Bergbaufolgeseen in unterschiedlichen Modellmaßstäben

Estudio de sistemas de lagos de hoyos de minas a través de múltiples escalas

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Understanding long term water quality and ecological aspects of pit lakes is important in understanding the risks and opportunities pit lakes present as mine closure legacies. Pit lake system (PLS) research can be conducted in experimental systems ranging from the test-tube, to microcosms, mesocosms, macrocosms, pilot-scale, through to a full-scale PLS. The use of pit lake studies over a range of scales provides a better understanding of environmental processes of interest and can deliver research outcomes in a more timely and economic manner than full-scale PLS experimentation alone. However, few scaled experiments have been realised and the reliable translation of experimental results to full-scale pit lakes has not been documented. Collectively, data from a range of scales can contribute to a multiple-lines-of-evidence approach to better understand and even predict PLS water chemistry and biota. Conceptual and numerical modelling can also help determine system facets, such as whether parameters and rates determined at smaller spatial scales apply to successively larger scales. However, modelling has significant limitations in water quality prediction. We recommend that studies on PLS management and sustainability be considered at multiple scales, including at evolving and established pit lakes, with different aspects considered at different scales in a complementary approach.

抽象

理解矿坑湖的长期水质和生态对于认识矿坑湖风险和机遇意义重大。矿坑湖系统(PLS)研究可以从试验柱规模,直至微观、中观、宏观、小型、甚至到全比例规模。系列尺度的矿坑湖模型研究有助于更好地了解感兴趣的矿坑湖环境演化过程,也能够比单个全比例矿坑湖试验以更及时、更经济的方式获取研究结果。几乎未经历不同规模试验而直接利用全比例矿坑湖模型的可靠研究未见报道。整体上,系列规模试验数据有助于多证据理解和预测矿坑湖水化学和生态。概念模型和数值模拟能够帮助确定系统细节,例如小空间尺度的模型参数和速度是否适合后续大比例模型。但是,模型在水质预测方面局限性较大。建议,在多尺度模型研究时,考虑正在发展的和已经建立的多尺度模型的管理和可持续性,以互补的方式考虑在不同尺度模型阶段的不同问题。

Zusammenfassung

Das Wissen über die langfristige Wasserqualität und ökologischen Aspekte von Bergbaufolgeseen ist für das Verständnis von Risiken und Möglichkeiten von Bergbaurestseen, die als bergbauliche Hinterlassenschaften vorliegen, wichtig. Untersuchungen zu Bergbaufolgeseesystemen können in experimentellen Systemen in verschiedenen Größenordnungen erfolgen. Vom Reagenzglas über kleine, mittlere und größerer Dimensionen, der Untersuchung im Pilotmaßstab bis zum 1:1 Bergbaufolgeseesystem Der Einsatz unterschiedlicher Maßstäbe bei Bergbaufolgeseeuntersuchungen ergibt ein besseres Verständnis für die relevanten ökologischen Prozesse und kann schneller und wirtschaftlicher Forschungsergebnisse liefern als ausschließlich 1:1 Versuche an Bergbaufolgeseen. Es sind jedoch bisher nur wenige maßstäbliche Untersuchungen ausgeführt worden und die erprobte Übertragung der Versuchsergebnisse auf die Bergbaufolgeseen selbst wurden nicht dokumentiert.Zusammengefasst können Daten aus Untersuchungen in unterschiedlichen Untersuchungsmaßstäben zu einem ganzheitlichen Ansatz, zum besseren Verständnis und sogar zur Vorhersage der Wasserchemie und Biologie von Bergbaufolgeseen beitragen. Konzeptuelle und numerische Modellierung kann auch zur Bestimmung von Systemaspekten beitragen wie z.B. Parameter und Raten die im kleineren räumlichen Maßstab ermittelt wurden und nach und nach in größeren Maßstäben anwendbar sind. Für die Modellierung bestehen jedoch erhebliche Einschränkungen bei der Wasserqualitätsvorhersage. Wir empfehlen in einem ergänzenden Ansatz, dass Studien zum Management von Bergbaufolgeseen in mehreren Maßstäben, an sich entwickelnden und bestehenden Bergbaufolgeseen, mit unterschiedlichen Aspekten unter Berücksichtigung unterschiedlicher Maßstäbe durchgeführt werden.

Resumen

La comprensión de la calidad del agua a largo plazo y los aspectos ecológicos de los lagos de hoyos de mina, es importante para comprender los riesgos y oportunidades que los lagos de hoyos de mina presentan como legados del cierre de minas. La investigación del sistema de lagos de hoyo de minas (PLS) se puede llevar a cabo en sistemas experimentales que van desde el tubo de ensayo, microcosmos, mesocosmos, macrocosmos, escala piloto, hasta un PLS a escala completa. El uso de estudios de lagos de hoyos de mina en una gama de escalas, proporciona una mejor comprensión de los procesos ambientales de interés y puede generar resultados de investigación de una manera más oportuna y más económica que la experimentación PLS a gran escala por si sola. Sin embargo, se han realizado pocos experimentos a escala y no se ha documentado la traslación confiable de los resultados experimentales a lagos de hoyos de mina a gran escala. En conjunto, los datos de una gama de escalas pueden contribuir a un enfoque de múltiples líneas de evidencia para comprender mejor e incluso predecir la química y la biota del agua PLS. El modelado conceptual y numérico también puede ayudar a determinar las facetas del sistema como, por ejemplo, si los parámetros y las tasas determinados a escalas espaciales más pequeñas se aplican a escalas sucesivamente más grandes. Sin embargo, el modelado tiene limitaciones significativas en la predicción de la calidad del agua. Recomendamos que los estudios sobre la gestión y la sostenibilidad de PLS se consideren a múltiples escalas, incluso en lagos en evolución y en aquellos establecidos, con diferentes aspectos considerados a diferentes escalas en un enfoque complementario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn C, Mitsch WJ (2000) Scaling considerations of mesocosm wetlands in simulating full-scale wetlands. Ecol Eng 18(3):327–342

    Google Scholar 

  • ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Report №. Australian and New Zealand Governments and Australian state and territory governments (ANZG), Canberra ACT, Australia. Accessed 20 Jan 2020

  • APEC (2018) Mine closure checklist for governments. In: Asia Pacific Economic Consortium (APEC), Canada

  • Barley SC, Meeuwig JJ (2017) The power and the pitfalls of large-scale, unreplicated natural experiments. Ecosystems 20(2):331–339

    Google Scholar 

  • Benton TG, Solan M, Travis JMJ, Sait SM (2007) Microcosm experiments can inform global ecological problems. Trends Ecol Evol 22:516–521

    Google Scholar 

  • Blodau C, Peine A, Horffman S, Peiffer S (2000) Organic matter diagenesis in acidic mine lakes. Acta Hydrochim Hydrobiol 28(3):123–135

    Google Scholar 

  • Boehrer B, Schultze M (2006) On the relevance of meromixis in mine pit lakes. In: Barnhisel RI (ed) Proceedings, 7th international conference on acid rock drainage (ICARD), St Louis, American Society of Mining and Reclamation (ASMR), pp 200–213

  • Bozau E, Bechstedt T, Friese K, Frömmichen R, Herzsprung P, Koschorreck M, Meier J, Völkner C, Wendt-Potthoff K, Wieprecht M, Geller W (2007) Biotechnological remediation of an acidic pit lake: modelling the basic processes in a mesocosm experiment. J Geochem Explor 92:212–221

    Google Scholar 

  • Buikema AI, Voshell JR (1993) Toxicity studies using freshwater benthic macroinvertebrates. In: Rosemberg DM, Resh VH (eds) Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York, pp 344–398

    Google Scholar 

  • Caquet T, Lagadic L, Jonot O, Baturo W, Kilanda M, Simon P, Le Bras S, Echaubard M, Ramade F (1996) Outdoor experimental ponds (mesocosms) designed for long-term ecotoxicological studies in aquatic environment. Ecotoxicol Environ Saf 34(2):125–133

    Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77(3):677–680

    Google Scholar 

  • Castendyk D, Webster-Brown J (2007a) Sensitivity analysis in pit lake prediction, Martha Mine, New Zealand 2: geochemistry, water–rock reactions, and surface adsorption. Chem Geol 244:56–73

    Google Scholar 

  • Castendyk DN, Webster-Brown JG (2007b) Sensitivity analyses in pit lake prediction, Martha Mine, New Zealand 1: relationship between turnover and input water density. Chem Geol 244(1–2):42–55

    Google Scholar 

  • Castendyk D, Balistrieri LS, Gammons CH, Tucci N (2015a) Modeling and management of pit lake water chemistry 2: case studies. Appl Geochem 57:289–307

    Google Scholar 

  • Castendyk D, Eary LE, Balistrieri LS (2015b) Modeling and management of pit lake water chemistry 1: theory. Appl Geochem 57:267–288

    Google Scholar 

  • Castendyk DN, Straight BJ, Voorhis JC, Somogyi MK, Jepson WE, Kucera BL (2019) Using aerial drones to select sample depths in pit lakes. In: Proceedings of the 13th international conference on mine closure, Perth, vol 1, pp 113–1126

  • Castro JM, Wielinga BW, Gannon JE, Moore JN (1999) Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic waste. Water Environ Res 71(2):218–223

    Google Scholar 

  • CEMA (2012) End Pit Lakes Guidance Document Report №. Cumulative Environmental Management Association, Calgary, p 436

    Google Scholar 

  • Chen M, Walshe G, Fru EC, Ciborowski JJH, Weisener CG (2013) Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Appl Geochem 37:1–11

    Google Scholar 

  • Chi Fru E, Chen M, Walshe G, Penner T, Weisener C (2013) Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds. Appl Microbiol Biotechnol 97:3215–3224

    Google Scholar 

  • Cook CN, Carter RW, Fuller RA, Hockings M (2012) Managers consider multiple lines of evidence important for biodiversity management decisions. J Environ Manag 113:341–346

    Google Scholar 

  • Corzo A, Jiménez-Arias JL, Torres E, García-Robledo E, Lara M, Papaspyrou S (2018) Biogeochemical changes at the sediment–water interface during redox transitions in an acidic reservoir: exchange of protons, acidity and electron donors and acceptors. Biogeochemistry 139(3):241–260

    Google Scholar 

  • de Lange WJ, Genthe B, Hill L, Oberholster PJ (2018) Towards a rapid assessment protocol for identifying pit lakes worthy of restoration. J Environ Manag 206:949–961

    Google Scholar 

  • de Szalay FA, Batzer DP, Resh VH (1996) Mesocosm and macrocosm experiments to examine effects of mowing emergent vegetation on wetland invertebrates. Environ Entomol 25(2):303–309

    Google Scholar 

  • deNoyelles F Jr, Dewey SL, Huggins DG, Kettle WD (1994) Aquatic mesocosms in ecological effects testing: detecting direct and indirect effects of pesticides. In: Graney RL (ed) Aquatic mesocosm studies in ecological risk assessment. Lewis Publishers, Boca Raton, pp 577–603

    Google Scholar 

  • Dessouki TC, Hudson JJ, Neal BR, Bogard MJ (2005) The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake. Water Res 39(13):3055–3061

    Google Scholar 

  • DIIS (2016) Leading practice sustainable development program for the mining industry—preventing acid and metalliferous. Drainage Handbook Dept of Industry, Innovation and Science (DIIS), Canberra

    Google Scholar 

  • DMP and EPA (2015) Guidelines for preparing mine closure plans. In: Report №. Western Australian Dept of Mines and Petroleum (DMP), Environmental Protection Authority of Western Australia (EPA), Perth, Australia

  • DOE (2010) Guidelines for the notification and testing of new substances. In: Organisms report №. Department of the Environment, Government of Canada, Ottawa

  • Dompierre KA, Barbour SL (2016) Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study. J Contam Hydrol 189:12–26

    Google Scholar 

  • Dompierre KA, Barbour SL (2017) Thermal properties of oil sands fluid fine tailings: laboratory and in situ testing methods. Can Geotech J 54:428–440

    Google Scholar 

  • Dompierre KA, Lidsay MBJ, Cruz-Hernández P, Halferdahl GM (2016) Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake. Sci Total Environ 556:196

    Google Scholar 

  • Dompierre KA, Lee Barbour S, North RL, Carey SK, Lindsay MB (2017) Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake. Water Resour Res 53:4725–4740

    Google Scholar 

  • Doupé RG, Lymbery AJ (2005) Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water Environ 24(3):134–138

    Google Scholar 

  • Drake JM, Kramer AM (2012) Mechanistic analogy: how microcosms explain nature. Theor Ecol 5:433–444

    Google Scholar 

  • Eary LE (1998) Predicting the effects of evapoconcentration of water quality in pit lakes. Geochem Explor 64:223–236

    Google Scholar 

  • Eary LE (1999) Geochemical and equilibrium trends in mine pit lakes. Appl Geochem 14(8):963–987

    Google Scholar 

  • Eberhardt LL, Thomas JM (1991) Designing environmental field studies. Ecol Monogr 61:53–73

    Google Scholar 

  • Friese K, Herzsprung P, Witter B (2002) Photochemical degradation of organic carbon in acidic mining lakes. Acta Hydrochim Hydrobiol 30:141–148

    Google Scholar 

  • Frömmichen R, Kellner S, Friese K (2003) Sediment conditioning with organic and/or inorganic carbon sources as a first step in alkalinity generation of acid mine pit lake water (pH 2–3). Environ Sci Technol 37:1414–1421

    Google Scholar 

  • Frömmichen R, Wendt-Potthoff K, Friese K, Fischer R (2004) Microcosm studies for neutralization of hypolimnic acid mine lake water (pH 2.6). Environ Sci Technol 38:1877–1887

    Google Scholar 

  • Fyson A, Nixdorf B, Kalin M, Steinberg CEW (1998a) Mesocosm studies to assess acidity removal from acidic mine lakes through controlled eutrophication. Ecol Eng 10:229–245

    Google Scholar 

  • Fyson A, Nixdorf B, Steinberg CEW (1998b) Manipulation of the sediment–water interface of extremely acidic mining lakes with potatoes: laboratory studies with intact sediment cores. Water Air Soil Pollut 108(3):353–363

    Google Scholar 

  • Fyson A, Deneke R, Nixdorf B, Steinberg CEW (2003) Extremely acidic mine lake ecosystems in Lusatia (Germany): characterization and development of sustainable, biology-based acidity removal technology. In: Presented at: Laurentian Univ, Sudbury

  • Fyson A, Nixdorf B, Kalin M (2006) The acidic lignite pit lakes of Germany—microcosm experiments on acidity removal through controlled eutrophication. Ecol Eng 28:288–295

    Google Scholar 

  • Gamble JC (1990) Mesocosms: statistical and experimental design considerations. In: Lalli CM (ed) Enclosed experimental marine ecosystems: a review and recommendations. Springer, Berlin, pp 188–196

    Google Scholar 

  • Gammons CH, Icopini GA (2019) Improvements to the water quality of the acidic Berkeley Pit Lake due to copper recovery and sludge disposal. Mine Water Environ 50:1

    Google Scholar 

  • Geller W, Schultze M (2013) Lessons learned, open questions and concluding remarks. In: Geller W, Schultze M, Kleinmann RLP, Wolkersdorfer C (eds) Acidic Pit Lakes—Legacies of surface mining on coal and metal ores. Springer, Berlin, pp 437–449

    Google Scholar 

  • Geller W, Klapper H, Salomons W (1998) Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer, Berlin

    Google Scholar 

  • Geller W, Koschorreck M, Wendt-Potthoff K, Bozau E, Herzsprung P, Büttner O, Schultze M (2009) A pilot-scale field experiment for the microbial neutralization of a holomictic acidic pit lake. J Geochem Explor 100:153–159

    Google Scholar 

  • Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) (2013) Acidic Pit Lakes—the legacy of coal and metal surface mines. Springer, Heidelberg

    Google Scholar 

  • Hall LW Jr, Giddings JM (2000) The need for multiple lines of evidence for predicting site-specific ecological effects. Hum Ecol Risk Assess 6(4):679–710

    Google Scholar 

  • Han X, MacKinnon MD, Martin JW (2009) Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76(1):63–70

    Google Scholar 

  • Harrington JM (2002) In situ treatment of metals in mine workings and materials. In: Tailings and mine waste 2002: proceedings of the 9th international conference on tailings and mine waste, Lisst, the Netherlands, Swets and Zeitflinger

  • Huber A, Ivey GN, Wake G, Oldham CE (2008) Near-surface wind-induced mixing in a mine lake. J Hydraul Eng 134(10):1464–1472

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Google Scholar 

  • Hurley DL (2017) Wind waves and internal waves in base mine lake. Dissertation, University of British Columbia

  • Hurst TH, Pacey AJ (2004) New Peruvian mine closure requirements. In: Latin America Mining Record Aug/Sept

  • ICMM (2019) Integrated mine closure: good practice Guide (2nd edition). In: Report №. International Council on Mining and Metals (ICMM), London, UK

  • IRMA (2018) IRMA standard for responsible mining report № IRMA-STD-001. In: Initiative for Responsive Mining Assurance (IRMA)

  • Jones H, McCullough CD (2011) Regulator guidance and legislation relevant to pit lakes. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 137–152

    Google Scholar 

  • Kamberović J, Arudanović S (2012) Algae and macrophytes of mine pit lakes in the wider area of Tuzla, Bosnia and Herzegovina. Nat Croat 21(1):101–118

    Google Scholar 

  • Klapper H (2003) Technologies for lake restoration. J Limnol 62(Supplement 1):73–90

    Google Scholar 

  • Klapper H, Geller W, Schultze M (1996) Abatement of acidification in mining lakes in Germany. Lake Reserv Manag 2(1–2):7–16

    Google Scholar 

  • Koschorreck M (2011) Oxygen depletion induced by adding whey to an enclosure in an acidic mine pit lake. Ecol Eng 37(12):1983–1989

    Google Scholar 

  • Koschorreck M, Frömmichen R, Herzsprung P, Tittel H, Wendt-Potthoff K (2002a) The function of straw for in situ remediation of acidic mining lakes: results from an enclosure experiment. Water Air Soil Pollut 2:97–109

    Google Scholar 

  • Koschorreck M, Herzsprung P, Wendt-Potthoff K, Lorke A, Geller W, Luther G, Elsner W, Müller M (2002b) An in-lake reactor to treat an acidic lake: the effect of substrate overdosage. Mine Water Environ 21:137–149

    Google Scholar 

  • Koschorreck M, Brookland I, Matthias A (2003) Biogeochemistry of the sediment–water interface in the littoral of an acidic mining lake studied with microsensors and gel-probes. J Exp Mar Biol Ecol 286–286:71–84

    Google Scholar 

  • Koschorreck M, Bozau E, Frommichen R, Geller W, Herzsprung P, Wendt-Potthoff K (2007) Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm. Environ Sci Technol 41(5):1608–1614

    Google Scholar 

  • Kovalenko K, Ciborowski J, Daly C, Dixon D, Farwell A, Foote L, Frederick K, Gardner Costa J, Kennedy K, Liber K, Roy M-C, Slama C, Smits J (2013) Food web structure in oil sands reclaimed wetlands. Ecol Appl 23:1048–1060

    Google Scholar 

  • Kuipers JR, Maest AS, MacHardy KA, Lawson G (2006) Comparison of predicted and actual water quality at hardrock mines; the reliability of predictions in environmental impact statements. Kuipers & Associates and Buka Environmental, p 228

  • Kumar NR, McCullough CD, Lund MA (2011a) Bacterial sulfate reduction based ecotechnology for remediation of acidic pit lakes. In: McCullough CD (ed) Proceedings of the Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, Australia, pp 121–134

  • Kumar NR, McCullough CD, Lund MA, Larranãga SA (2011b) Evaluating the factors limiting algal biomass in acidic pit lakes of the Collie Lake District, Western Australia. In: Rüde TR, Freund A, Wolkersdorfer C (eds) Proceedings of the international mine water Association (IMWA) Congress, Aachen, Germany, pp 523–527

  • Kumar RN, McCullough CD, Lund MA (2011c) How does storage affect the quality and quantity of organic carbon in sewage for use in the bioremediation of acidic mine waters? Ecol Eng 37(8):1205–1213

    Google Scholar 

  • Kumar NR, McCullough CD, Lund MA (2013) Upper and lower concentration thresholds for bioremediation of acid mine drainage using bulk organic substrates. Mine Water Environ 32:285–292

    Google Scholar 

  • Kumar RN, McCullough CD, Lund MA, Larranãga S (2016) Assessment of factors limiting algal growth in acidic pit lakes—a case study from Western Australia, Australia. Environ Sci Pollut Res 23(6):5915–5924

    Google Scholar 

  • Kuznetsov P, Kuznetsova A, Foght JM, Siddique T (2014) Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying. Sci Total Environ 505:1–10

    Google Scholar 

  • Lapakko K, Leopold L, Antonson D, Theriault S, Mehleis E (2013) Subaqueous disposal of sulfidic waste rock: six-year laboratory batch experiment, In: Report №. Minnesota Department of Natural Resources, Division of Lands and Minerals, USA

  • Larratt HM, Freberg M, Hamaguchi BA (2007) Developing tailings ponds and pit lakes as bioreactors and habitat cost-effective successes at Highland Valley Copper. In: British Columbia Mine Reclamation Symposium, Squamish, Canada, BiTech Publishers Ltd., British Columbia, Canada

  • Lawrence GA, Tedford EW, Pieters R (2016) Suspended solids in an end pit lake: potential mixing mechanisms. Can J Civ Eng 43(3):211–217

    Google Scholar 

  • Lu M (2004) Aqueous geochemistry of pit lakes—two cases studies at Rävlidmyran and Udden, Sweden. PhD, Luleå University of Technology

  • Luek A, Rowan DJ, Rasmussen JB (2017) N–P fertilization stimulates anaerobic selenium reduction in an end-pit lake. Sci Rep 7(1):10502

    Google Scholar 

  • Lund MA, McCullough CD (2009) Biological remediation of low sulphate acidic pit lake waters with limestone pH neutralisation and amended nutrients. In: Proceedings of the IMWA conference Pretoria, South Africa, pp 519–525

  • Lund MA, McCullough CD (2011) Restoring pit lakes: factoring in the biology. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 83–90

    Google Scholar 

  • Lund MA, McCullough CD, Yuden (2006) In-situ coal pit lake treatment of acidity when sulfate concentrations are low. In: Barnhisel RI (ed) Proceedings of the 7th ICARD, St Louis, Missouri, USA, ASMR, pp 1106–1121

  • Lund MA, Van Etten EJB, McCullough CD (2013) Importance of catchment vegetation and design to long-term rehabilitation of acidic pit lakes. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Proceedings of the IMWA congress, Colorado, pp 1029–1034

  • Martin A, Crusius J, McNee J, Whittle P, Pieters R, Pedersen T (2003) Field-scale assessment of bioremediation strategies for two pit lakes using limnocorrals. In: Proceedings of the 6th ICARD, Cairns, Australia, Australasian Institute of Mining and Metallurgy, pp 529–539

  • McCullough CD (2006) A multi-scale assessment of the ecological risk of magnesium sulfate to aquatic biota of Magela Creek, Northern Territory, Australia. Unpublished PhD thesis, Charles Darwin University

  • McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Min Reclam Environ 22(2):105–119

    Google Scholar 

  • McCullough CD (2009) Aquatic toxicity assessment across multiple scales. In: Miranda FR, Bernard LM (eds) Lake pollution research progress. Nova Science Publishers Inc., Hauppauge, pp 133–155

    Google Scholar 

  • McCullough CD (2015) Consequences and opportunities of river breach and decant from an acidic mine pit lake. Ecol Eng 85:328–338

    Google Scholar 

  • McCullough CD, Horwitz P (2010) Vulnerability of organic acid tolerant wetland biota to the effects of inorganic acidification. Sci Total Environ 408:1868–1877

    Google Scholar 

  • McCullough CD, Lund MA (2011) Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Manag 92:2419–2426

    Google Scholar 

  • McCullough CD, Schultze M (2018) Engineered river flow-through to improve mine pit lake and river water values. Sci Total Environ 640:217–231

    Google Scholar 

  • McCullough CD, Van Etten EJB (2011) Ecological restoration of novel lake districts: new approaches for new landscapes. Mine Water Environ 30:312–319

    Google Scholar 

  • McCullough CD, Lund MA, May JM (2006) Microcosm testing of municipal sewage and green waste for full-scale remediation of an acid coal pit lake, in semi-arid tropical Australia. In: Barnhisel RI (ed) Proceedings of the 7th ICARD, St Louis, MO, USA, ASMR, pp 1177–1197

  • McCullough CD, Lund MA, May J (2008a) Field scale demonstration of the potential for sewage to remediate acidic mine waters. Mine Water Environ 27(1):31–39

    Google Scholar 

  • McCullough CD, Lund MA, May JM (2008b) Field scale trials treating acidity in coal pit lakes using sewage and green waste. In: Rapantova N, Hrkal Z (eds), Proceedings of the 10th IMWA congress, Karlovy Vary, Czech Republic, pp 599–602

  • McCullough CD, Müller M, Eulitz K, Lund MA (2011) Modelling a pit lake district to plan for abstraction regime changes. In: Fourie AB, Tibbett M, Beersing A (eds) Mine closure 2011: Proceedings of the 6th international conference on mine closure, Lake Louise, Canada, Australian Centre for Geomechanics (ACG), Perth, pp 581–592

  • McCullough CD, Marchand G, Unseld J (2013) Mine closure of pit lakes as terminal sinks: best available practice when options are limited? Mine Water Environ 32(4):302–313

    Google Scholar 

  • McCullough CD, Schultze M, Vandenberg J (2018) Realising beneficial end uses for pit lakes. In: Drebenstedt C, von Bismarck F, Fourie A, Tibbett M (eds) Proceedings of the international mine closure congress, Leipzig, Germany, ACG, pp 497–504

  • McCullough CD, van Rooijen A, van Maren B (2019) Process-based shoreline erosion modelling for batter design of a coal mine Pit Lake. In: Fourie AB, Tibbett M (eds) Mine closure 2019: Proceedings of the 14th international conference on mine closure, Perth, Australia, ACG, Perth, Australia, pp 75–87

  • McCullough CD, Schultze M, Vandenberg J (2020) Realising beneficial end uses from abandoned pit lakes. Minerals 10:133. https://doi.org/10.3390/min10020133

    Article  Google Scholar 

  • McJannet D, Hawdon A, Van Niel T, Boadle D, Baker B, Trefry M, Rea I (2017) Measurements of evaporation from a mine void lake and testing of modelling approaches. J Hydrol 555:631–647

    Google Scholar 

  • McJannet D, Hawdon A, Baker B, Ahwang K, Gallant J, Henderson S, Hocking A (2019) Evaporation from coal mine pit lakes: measurements and modelling. In: Proceedings of the 13th international conference on mine closure, Perth, pp 1391–1404

  • Morandi GD, Wiseman SB, Pereira A, Mankidy R, Gault IGM, Martin JW, Giesy JP (2015) Effects-directed analysis of dissolved organic compounds in oil sands process-affected water. Environ Sci Technol 49(20):12395–12404

    Google Scholar 

  • Morandi GD, Zhang K, Wiseman SB, Pereira ADS, Martin JW, Giesy JP (2016) Effect of lipid partitioning on predictions of acute toxicity of oil sands process affected water to embryos of fathead minnow (Pimephales promelas). Environ Sci Technol 50(16):8858–8866

    Google Scholar 

  • Morandi GD, Wiseman SB, Guan M, Zhang XW, Martin JW, Giesy JP (2017) Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). Chemosphere 186:893–900

    Google Scholar 

  • Mori JF, Chen L-X, Jessen GL, Rudderham SB, McBeth JM, Lindsay MB, Slater GF, Banfield JF, Warren LA (2019) Putative mixotrophic nitrifying-denitrifying Gammaproteobacteria implicated in nitrogen cycling within the ammonia/oxygen transition zone of an oil sands pit Lake. Front Microbiol 10:2435

    Google Scholar 

  • Neil LL (2008) Bioassay assessment of mine pit lake water for aquaculture and biodiversity conservation. PhD, Curtin University of Technology, Perth Australia

  • Neil LL, McCullough CD, Lund MA, Tsvetnenko Y, Evans L (2009) Toxicity of acid mine pit lake water remediated with limestone and phosphorus. Ecotoxicol Environ Safe 72(8):2046–2057

    Google Scholar 

  • Nguyen T (2004) Modelling the hydrodynamics of Chicken Creek mining lake. Dissertation, BE, University of Western Australia

  • Nixdorf B, Uhlmann W, Lessmann D (2010) Potential for remediation of acidic mining lakes evaluated by hydrogeochemical modelling: case study Grünewalder Lauch (Plessa 117, Lusatia/Germany). Limnologica 40(2):167–174

    Google Scholar 

  • Odum EP (1984) The mesocosm. Bioscience 35(7):419–422

    Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Google Scholar 

  • Oldham C, Salmon SU, Hipsey MR, Ivey GN (2009) Modelling pit lake water quality—coupling of lake stratification dynamics, lake ecology, aqueous geochemistry and sediment diagenesis. In: Castendyk D, Eary T (eds) Workbook of technologies for the management of metal mine and metallurgical process drainage. Society for Mining, Metallurgy, and Exploration (SME), Colorado

    Google Scholar 

  • Oťaheľová H, Oťaheľ J (2006) Distribution of aquatic macrophytes in pit lakes in relation to the environment (Borská Nížina lowland, Slovakia). Eklógia 25(4):398–411

    Google Scholar 

  • Pal S, Kumar Mukherjee A, Senapati T, Samanta P, Mondal S, Ratan Ghosh A (2014) Study on littoral zone sediment quality and aquatic macrophyte diversity of opencast coal pit-lakes in Raniganj coal field, West Bengal, India. Int J Environ Sci 4:575–588

    Google Scholar 

  • Park BT, Wangerud K, Fundingsland S, Adzic M, Lewis N (2006) In situ chemical and biological treatment leading to successful water discharge from Anchor Hill Pit Lake, Gilt Edge Mine Superfund Site, South Dakota, USA. In: 7th International conference on acid rock drainage (ICARD), St Louis, pp 1065–1069

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Report № 99-4259. U.S. Geological Survey, p 310

  • Petersen JE, Englund G (2005) Dimensional approaches to designing better experimental ecosystems: a practitioner’s guide with examples. Oecologia 145:216–224

    Google Scholar 

  • Petersen JE, Hastings A (2001) Dimensional approaches to scaling experimental ecosystems: designing mousetraps to catch elephants. Am Nat 157:324–333

    Google Scholar 

  • Petersen JE, Kemp WM, Kennedy VS, Dennison WC, Kangas P (2009) Enclosed experimental ecosystems and scale. Springer, New York

    Google Scholar 

  • Pilkey O, Pilkey-Jarvis L (2012) Useless arithmetic: why environmental scientists can’t predict the future. Columbia University Press, New York

    Google Scholar 

  • Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: a review. J Environ Sci Health 40(3):685–722

    Google Scholar 

  • Read DJ, Oldham CE, Myllymäki T, Koschorreck M (2009) Sediment diagenesis and porewater solute fluxes in acidic mine lakes: the impact of dissolved organic carbon additions. Mar Freshw Res 60:660–668

    Google Scholar 

  • Richardson E, Bass D, Smirnova A, Paoli L, Dunfield P, Dacks JB (2020) Phylogenetic estimation of community composition and novel eukaryotic lineages in Base Mine Lake: an oil sands tailings reclamation site in Northern Alberta. J Eukaryot Microbiol 67:86–99

    Google Scholar 

  • Ross T, McCullough CD (2011) Health and safety working around pit lakes. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 167–181

    Google Scholar 

  • Rudderham SB (2019) Geomicrobiology and geochemistry of fluid fine tailings in an oil sands end pit lake. Thesis, University of Saskatchewan

  • Sackmann J (2006) The effect of experimental liming and nutrient addition on phytoplankton of an acidic mine lake. In: University of Western Australia

  • Samadi N (2019) Partitioning of inorganic contaminants between fluid fine tailings and cap water under end pit lake scenario: biological, chemical and mineralogical processes. Thesis, University of Alberta

  • Schindler DW (1998) Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–334

    Google Scholar 

  • Schultze M, Pokrandt K-H, Hille W (2010) Pit lakes of the Central German lignite mining district: creation, morphometry and water quality aspects. Limnol Ecol Manag Inland Waters 40(2):148–155

    Google Scholar 

  • Schultze M, Geller W, Benthaus FC, Jolas P (2011) Filling and management of pit lakes with diverted river water and with mine water—German experiences. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 107–120

    Google Scholar 

  • Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45(13):5892–5899

    Google Scholar 

  • Siddique T, Kuznetsov P, Kuznetsova A, Arkell N, Young R, Li C, Guigard S, Underwood E, Foght JM (2014a) Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Front Microbiol 5:106

    Google Scholar 

  • Siddique T, Kuznetsov P, Kuznetsova A, Li C, Young R, Arocena JM, Foght JM (2014b) Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Front Microbiol 5:107

    Google Scholar 

  • Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6iso-alkanes in oil sands tailings. Environ Sci Technol 49(24):14732–14739

    Google Scholar 

  • Sommer U (2012) Experimental systems in aquatic ecology. Wiley, Berlin

    Google Scholar 

  • Spivak AC, Vanni MJ, Mette EM (2010) Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshw Biol 56:279–291

    Google Scholar 

  • Stewart RIA, Dossena M, Bohan DA, Jeppesen E, Kordas RL, Ledger ME, Meerhoff M, Moss B, Mulder C, Shurin JB, Suttle B, Thompson R, Trimmer M, Woodward G (2013) Mesocosm experiments as a tool for ecological climate-change research. Adv Ecol Res 48:71–117

    Google Scholar 

  • Stewart-Oaten AJ (1995) Rules and judgments in statistics: three examples. Ecology 76(6):2001–2009

    Google Scholar 

  • Stewart-Oaten AJ, Bence JR, Osenberg CW (1992) Assessing effects of unreplicated perturbations: no simple solutions. Ecology 73:1396–1404

    Google Scholar 

  • Stierle A, Stierle D (2014) Bioactive secondary metabolites from acid mine waste extremophiles. Nat Prod Commun 9:1037–1044

    Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71(14):5357–5360

    Google Scholar 

  • Striebel M, Kirchmaier L, Hingsamer P (2013) Different mixing techniques in experimental mesocosms—does mixing affect plankton biomass and community composition? Limnol Oceanogr Methods 11(4):176–186

    Google Scholar 

  • Suncor (2018) Demonstration pit lake provides continuous opportunity for community engagement. https://connections.suncor.com/regional-municipality-wood-buffalo/november-2018/demonstration-pit-lake-provides-continuous-opportunity-for-community-engagement. Accessed 20 Jan 2018

  • Tchobanoglous G, Burton FL (1991) Wastewater engineering treatment, disposal and reuse. McGraw-Hill, Inc, New York

    Google Scholar 

  • Tedford E, Halferdahl G, Pieters R, Lawrence GA (2019) Temporal variations in turbidity in an oil sands pit lake. Environ Fluid Mech 19:457–473

    Google Scholar 

  • Tostche O, Fyson A, Steinberg C (2003) Neutralizing extremely acidic mining lakes by chemical and microbial treatment—mesocosm studies. In: Proceedings of the Sudbury 2003: mining and the environment, Laurentian University, Sudbury. http://pdf.library.laurentian.ca/medb/conf/Sudbury03/AcidicLakes/153.pdf

  • Tucci NJ, Gammons CH (2015) Influence of copper recovery on the water quality of the acidic Berkeley Pit Lake, Montana, USA. Environ Sci Technol 49(7):4081–4088

    Google Scholar 

  • Van Dam RA, Humphrey CL, Harford AJ, Sinclair AC, Jones DR, Davies S, Storey AW (2014) Site-specific water quality guidelines: 1. Derivation approaches based on physicochemical, ecotoxicological and ecological data. Environ Sci Pollut Res 21(1):118–130

    Google Scholar 

  • Van Etten EJB, McCullough CD, Lund MA (2014) Setting goals and choosing appropriate reference sites for restoring mine pit lakes as aquatic ecosystems: case study from south west Australia. Min Technol 123(1):9–19

    Google Scholar 

  • Vandenberg J, McCullough C (2017) Key issues in mine closure planning for pit lakes. In: Nanthi Bolan N, Ok Y, Kirkham M (eds) Spoil to soil: mine site rehabilitation and revegetation. CRC Press, Boca Raton, pp 175–188

    Google Scholar 

  • Warwick RM, Carr MR, Clarke KR, Gee JM, Green RH (1988) A mesocosm experiment on the effects of hydrocarbon and copper pollution on a sublittoral soft-sediment meiobenthic community. Mar Ecol Prog Ser 46:181–191

    Google Scholar 

  • Watson A, Linklater C, Chapman J (2016) Backfilled Pits—laboratory-scale tests for assessing impacts on groundwater. In: Life of mine, Brisbane, Australia. Australasian Inst for Mining and Metallurgy (AusIMM), pp 113–117

  • Watts MC, Bigg GR (2001) Modelling and the monitoring of mesocosm experiments: two case studies. J Plankton Res 23(10):1081–1093

    Google Scholar 

  • Wendt-Potthoff K, Bozau E, Frömmichen R, Meier J, Koschorreck M (2010) Microbial iron reduction during passive in situ remediation of an acidic mine pit lake mesocosm. Limnologica 40(2):175–181

    Google Scholar 

  • White KB, Liber K (2018) Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake. Chemosphere 211:745–757

    Google Scholar 

  • Whittle P (2004) The biogeochemistry of the equity silver mine pit Lakes. MSc, Univ of British Columbia

  • Williams RD (2009) Regulatory issues in the United States. In: Castendyk D, Eary T (eds) Mine Pit lakes: characteristics, predictive modeling, and sustainability. SME, Littleton, pp 13–17

    Google Scholar 

  • Williams PJB, Egge JK (1998) The management and behaviour of the mesocosms. Estuar Coast Shelf Sci 46:3–14

    Google Scholar 

  • Wynn G, Paradise CJ (2001) Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens. BMC Ecol 1(1):3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie D. McCullough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCullough, C.D., Vandenberg, J. Studying Mine Pit Lake Systems Across Multiple Scales. Mine Water Environ 39, 173–194 (2020). https://doi.org/10.1007/s10230-020-00678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00678-7

Keywords

Navigation