Skip to main content

Advertisement

Log in

Waste Glycerol Addition to Reduce AMD Production in Unsaturated Mine Tailings

Glyzerinzugabe in ungesättigte Rückstandshalden zur Verminderung der Sauerwasserentstehung

Adición de glicerol para reducir la producción de AMD en colas de mina insaturadas

甘油减少非饱和尾矿酸性矿山废水产生的作用

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A 20 month long column study was conducted to evaluate the surface application of waste glycerol (WG) to reduce release of acid mine drainage constituents from mine tailings. Beneficial characteristics of the WG include high aqueous solubility, high organic content, and high alkalinity. Four columns were packed with fine-grained sulfide rich tailings and incubated in the field under ambient temperature and precipitation conditions. In the two replicate untreated control columns, diffusion of oxygen into the tailings resulted in large increases in dissolved iron, sulfate, manganese, magnesium, aluminum, zinc, and hot acidity with an associated drop in pH. In the two replicate treated columns, WG was blended into the top 0.18 m of tailings 7 months after the columns were established, resulting in large reductions in iron, sulfate, hot acidity, aluminum, copper, and manganese. Observed pollutant reductions resulted from a combination of processes including: (a) neutralization of acidity by the KOH present in the WG (b) reduction of SO4 to H2S with subsequent precipitation of dissolved metals, and potentially (c) consumption of oxygen, slowing oxidation of the tailings.

Zusammenfassung

Ein 20-monatiger Säulenversuch wurde durchgeführt, um festzustellen, ob der Einbau von Glyzerinabfällen im oberflächlichen Bereich von Rückstandshalden eine Verminderung des Sauerwasseraustrages bewirkt. Günstige Eigenschaften des Glyzerinabfalls sind unter anderem: hohe Wasserlöslichkeit, hoher Anteil an organischen Verbindungen und hohe Alkalinität. Vier Säulen wurden mit feinkörnigen, sulfidreichen Aufbereitungsrückständen gefüllt und im Gelände unter natürlichen Temperatur- und Niederschlagsbedingungen eingebaut. In den zwei unbehandelten Säulen wurde aufgrund des Sauerstoffeintrags in die Aufbereitungsrückstände ein starker Anstieg an gelöstem Eisen, Sulfat, Mangan, Magnesium, Aluminium, Zink, und der Gesamtazidität beobachtet, was mit einem Absinken des pH Wertes einherging. In den zwei behandelten Säulen wurden die Glyzerinabfälle sieben Monate nach Aufbau der Säulen den oberen 18 cm der Aufbereitungsrückstände beigemischt. Dies hatte eine starke Erniedrigung der Konzentrationen von Eisen, Sulfat, Gesamtazidität, Aluminium, Kupfer und Mangan zur Folge. Die beobachtete Schadstoffverminderung ist unter anderem auf eine Kombination der folgenden Prozessen zurückzuführen: (a) Neutralisierung der Azidität durch KOH in Glyzerinabfällen, (b) Reduktion von SO4 zu H2S mit anschließender Ausfällung der gelösten Metalle und möglicherweise (c) Verbrauch von Sauerstoff und dadurch Verlangsamung der Oxidation der Aufbereitungsrückstände.

Resumen

Se realizó un estudio de 20 meses en una columna para evaluar la aplicación en superficie de residuos de glicerol (WG) para reducir la generación de drenaje ácido de minas (AMD) desde colas de minas. Entre las características benéficas de WG incluyen la alta solubilidad en agua, alto contenido orgánico y alta alcalinidad. Se rellenaron cuatro columnas con finos de colas ricas en sulfuros y luego se incubaron en el campo a temperatura ambiente y bajo condiciones de precipitación. En las dos columnas control, no tratadas, la difusión de oxígeno en las colas resultó en incrementos importantes en el hierro disuelto, sulfato, manganeso, magnesio, aluminio, cinc y acidez con una caída en el valor del pH. En las dos columnas tratadas, WG fue agregado en los primeros 0,18 m de las escombreras siete meses después que las columnas se estabilizaran, resultando en significativas reducciones de hierro, sulfato, acidez, aluminio, cobre y manganeso. Las reducciones observadas se deben probablemente a una combinación de procesos que incluyen: (a) neutralización de acidez por el KOH presente en el WG (b) reducción de SO42- a H2S con la subsecuente precipitación de los metales disueltos y, potencialmente, (c) consumo de oxígeno, lentificando la oxidación de las colas.

抽象

通过20个月的柱体试验,本文研究了废甘油(WG)减少尾矿酸性矿山废水(AMD)产生的作用。废甘油(WG)的有利特性包括高水溶性、高有机质含量和高碱度。四个试验圆柱充填含硫化物细粒尾矿,并在野外温度和降雨条件下培养。在两个相同的、未经甘油处理的对照试验柱体中,氧气扩散作用使柱体内溶液的溶解性铁、硫酸盐、锰、镁、铝、锌和热酸含量大幅增加,PH值降低。在两个相同的、经甘油处理的柱中,试验柱体顶部0.18m厚尾矿与废甘油充分混合,处理后柱体溶液中铁、硫酸盐、热酸度、铝、铜和锰含量大幅减少。柱体溶液污染物减少的主要原因是由以下过程综合作用引起的:(a)废甘油中氢氧化钾的酸中和作用;(b)硫酸根离子还原为硫化氢,并伴随溶解金属离子的顺序沉淀;(c)氧消耗减缓了尾矿的氧化作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Behrooz M, Borden RC (2012) Physical, hydrologic, and aqueous chemical characterization of the Ore Knob Tailings Pile (Ashe County, North Carolina, USA). Mine Water Environ 31(1):3–15. doi:10.1007/s10230-011-0166-0

    Article  Google Scholar 

  • Blowes DW, Jambor JL, Appleyard EC, Reardon EJ, Cherry JA (1992) Temporal observations of the geochemistry and mineralogy of a sulfide-rich mine-tailings impoundment. Heath steele mines, New Brunswick. Explor Min Geol 1:251–264

    Google Scholar 

  • Chaimberg M, Carty RH, Scroppo JA (1992) Evaluation of a hydraulically-installed suction lysimeter to obtain representative soil water samples. Environ Prog 11(3):190–194. doi:10.1002/ep.670110312

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Trussell RR (eds) (1989) Acidity-hot peroxide treatment. Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, DC, pp 2–33

    Google Scholar 

  • Coetser SE, Pulles W, Heath RG, Cloete TE (2006) Chemical characterization of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment. Biodegradation 17:169–179. doi:10.1007/s10532-005-7567-3

    Article  Google Scholar 

  • Colucci JA, Borrero EE, Alape F (2005) Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J Am Oil Chem Soc 82:525–530. doi:10.1007/s11746-005-1104-3

    Article  Google Scholar 

  • Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnol Bioeng 40:609–616. doi:10.1002/bit.260400508

    Article  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. Adv Agron 94:1–54

    Article  Google Scholar 

  • Germain D, Tassé N, Cyr J (2003) Rehabilitation of mine tailings by simultaneous prevention of oxidation and treatment of acid effluents using a wood-waste cover. In: Proceeding of 6th International Conference on Acid Rock Drainage (ICARD). Australia

  • Hulshof AHM, Blowes DW, Gould WD (2006) Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res 40:1816–1826

    Article  Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659. doi:10.1016/j.apgeochem.2004.09.019

    Article  Google Scholar 

  • Nagy KL, Blum AE, Lasaga AC (1991) Dissolution and precipitation kinetics of kaolinite at 80-degrees-D and pH 3—the dependence on solution saturation state. Am J Sci 291:649–686

    Article  Google Scholar 

  • Nordstrom KD, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. Rev Econ Geol 6A:133–160

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations, USGS/WRI-99-4259, USGS, Denver, CO, USA

  • PIRAMID Consortium (2003) Engineering guidelines for the passive remediation of acidic and/or metalliferous mine drainage and similar wastewaters. European Commission 5th Framework RTD Project EVK1-CT-1999-000021, Passive in situ remediation of acidic mine/industrial drainage. (PIRAMID). Univ of Newcastle Upon Tyne, Newcastle Upon Tyne, UK

  • Pyatt FB, Grattan PJ (2001) Some consequences of ancient mining activities on the health of ancient and modern human populations. J Public Health Med 23:235–236. doi:10.1093/pubmed/23.3.235

    Article  Google Scholar 

  • Rickard D (1995) Kinetics of FeS precipitation: part 1. Competing reaction mechanisms. Geochim Cosmochim Acta 59(21):4367–4379. doi:10.1016/0016-7037(95)00251-T

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and minesoils. US EPA. Report EPA-600/2-78-054

  • US EPA (1980) COD ranges 3–150 mg/L and 20–1500 mg/L COD are U.S. EPA approved (5220 D) for water, wastewater. Fed Regist 45(78):26811–26812

    Google Scholar 

  • U.S. EPA (2010) Action memorandum: Request for a change of scope and removal action ceiling increase at Ore Knob mine site, EPA, Region 4, http://www.epaosc.org/site/site_profile.aspx?site_id=4530

  • Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356. doi:10.1021/es010751g

    Article  Google Scholar 

  • Zagury GJ, Kulnieks VI, Neculita CM (2006) Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64:944–954. doi:10.1016/j.chemosphere.2006.01.001

    Article  Google Scholar 

Download references

Acknowledgments

We thank the United Soybean Board and US Environmental Protection Agency for the financial and technical support provided for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnoosh Behrooz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrooz, M., Borden, R.C. Waste Glycerol Addition to Reduce AMD Production in Unsaturated Mine Tailings. Mine Water Environ 31, 161–171 (2012). https://doi.org/10.1007/s10230-012-0180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-012-0180-x

Keywords

Navigation