Skip to main content
Log in

The origin and population divergence of Parabotia curtus (Botiidae: Cypriniformes), a relict loach in Japan

  • Full Paper
  • Published:
Ichthyological Research Aims and scope Submit manuscript

Abstract

Parabotia curtus is the only botiid species in Japan, where its range is restricted to two small regions, Kinki and Sanyo. In this study, we performed molecular phylogenetic and population genetic analyses to reconstruct the evolutionary history of this species. A time tree constructed based on mitochondrial genome data revealed that P. curtus was one of the earliest species derived from the most northward range-expanding botiid group (Parabotia) during the Late Miocene. A reduction in its distribution and population size during the Late Pleistocene was inferred from shallow but clear regional population divergence, as verified by mitochondrial sequence and microsatellite data. These results provide evidence that this species is a relict of an old layer of Japanese freshwater ichthyofauna and emphasize the need to conserve the Kinki and Sanyo populations as distinct evolutionary units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe T, Sakamoto T (2011) Embryonic development and larval behavior of the kissing loach (Parabotia curta): adaptations to an ephemeral, hypoxic environment. Ichthyol Res 58:238–244

    Article  Google Scholar 

  • Abe T, Kobayashi I, Kon M, Sakamoto T (2007a) Spawning behavior of kissing loach (Leptobotia curta) in temporary waters. Zoolog Sci 24:850–853

  • Abe T, Kobayashi I, Kon M, Sakamoto T (2007b) Spawning of kissing loach (Leptobotia curta) is limited after the formation of temporary waters. Zoolog Sci 24:922–926

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res Solid Earth 112:B05423

    Article  Google Scholar 

  • Aoyama S, Watanabe S, Ishikawa S, Nishida M, Tsukamoto K (2000) Are morphological characters distinctive enough to discriminate between two species of freshwater eels, Anguilla celebesensis and A. interioris? Ichthyol Res 47:157–161

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution (2nd edn). Sinauer Associates, Sunderland

    Google Scholar 

  • Avise JC, Arnold J, Ball RM Jr, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Interspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Avise JC, Bowen BW, Ayala FJ (2016) In the light of evolution X: comparative phylogeography. PNAS 113:7957–7961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KH (2008) Fish mitochondrial genomics: sequence, inheritance and functional variation. J Fish Biol 72:355–374

    Article  CAS  Google Scholar 

  • Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 25:624–633

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2:184

  • Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1:875–880

    Article  CAS  Google Scholar 

  • Cox CB, Moore PD, Ladle RJ (2016) Biogeography: an ecological and evolutionary approach (9th edn). Wiley, Hoboken

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Edwards SV, Robin VV, Ferrand N, Moritz C (2021) The evolution of comparative phylogeography: putting the geography (and more) into comparative population genomics. Genome Biol Evol 14:evab176

    Article  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Froese R, Pauly D (2021) FishBase. http://www.fishbase.org. Accessed 22 Nov 2021

  • Goudet J (2003) Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. http://www.unil.ch/izea/softwares/fstat.html. Accessed 22 Nov 2021

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci Rev 125:171–198

    Article  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata A (2006) Significance of paddy field agriculture for the existence of the kissing loach (Leptobotia curta). Jpn J Conserv Ecol 11:133–141

    Google Scholar 

  • Iwata A (2015) Parabotia curtus (Temminck & Schlegel, 1846). In: Ministry of the Environment (ed) Threatened wildlife of Japan, Red Data Book 2014: Pisces—brackish and fresh water fishes. Gyosei, Tokyo, pp 50–51

  • Jang-Liaw NH, Tominaga K, Zhang C, Zhao Y, Nakajima J, Onikura N, Watanabe K (2019) Phylogeography of the Chinese false gudgeon, Abbottina rivularis, in East Asia, with special reference to the origin and artificial disturbance of Japanese populations. Ichthyol Res 66:460–478

    Article  Google Scholar 

  • Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano Y, Adnan MS, Grudpan C, Grudpan J, Magtoon W, Musikasinthorn P, Natori Y, Ottomanski S, Praxaysonbath B, Phongsa K, Rangsiruji A, Shibukawa K, Shimatani Y, So N, Suvarnaraksha A, Thach P, Thanh PN, Tran DD, Utsugi K, Yamashita T (2013) An online database on freshwater fish diversity and distribution in Mainland Southeast Asia. Ichthyol Res 60:293–295

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitanishi S, Hayakawa A, Takamura K, Nakajima J, Kawaguchi Y, Onikura N, Mukai T (2016) Phylogeography of Opsariichthys platypus in Japan based on mitochondrial DNA sequences. Ichthyol Res 63:506–518

    Article  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • MacDonald G (2017) Biogeography: introduction to space, time and life (2nd edn). Wiley, Hoboken

    Google Scholar 

  • Maddison WP, Maddison DR (2021) Mesquite: a modular system for evolutionary analysis. Version 3.70. http://www.mesquiteproject.org. Accessed 22 Nov 2021

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motokawa M, Kajihara H (2017) Species diversity of animals in Japan. Springer Japan, Tokyo

  • Palumbi S, Martin A, Romano S, McMillian WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. University of Hawaii, Honolulu

    Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, Kaschner K, Garilao C, Near TJ, Coll M, Alfaro ME (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–395

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2020) FigTree, version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 22 Nov 2021

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie AM, Lo N, Ho SH (2017) The impact of the tree prior on molecular dating of data sets containing a mixture of inter-and intraspecies sampling. Syst Biol 66:413–425

    PubMed  Google Scholar 

  • Saitoh K, Sado T, Doosey MH, Bart HL Jr, Inoue JG, Nishida M, Mayden RL, Miya M (2011) Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 161:633–662

    Article  Google Scholar 

  • Satoh TP, Miya M, Mabuchi K, Nishida M (2016) Structure and variation of the mitochondrial genome of fishes. BMC Genomics 17:719

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11:e0163962

    Article  PubMed  PubMed Central  Google Scholar 

  • Šlechtová V, Bohlen J, Freyhof J, Ráb P (2006) Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol Phylogenet Evol 39:529–541

    Article  PubMed  Google Scholar 

  • Šlechtová V, Bohlen J, Tan HH (2007) Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol 44:1358–1365

    Article  PubMed  Google Scholar 

  • Tabata R, Kakioka R, Tominaga K, Komiya T, Watanabe K (2016) Phylogeny and historical demography of endemic fishes in Lake Biwa: the ancient lake as a promoter of evolution and diversification of freshwater fishes in western Japan. Ecol Evol 6:2601–2623

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Xiong B, Yang X, Liu H (2005) Phylogeny of the East Asian botiine loaches (Cypriniformes, Botiidae) inferred from mitochondrial cytochrome b gene sequences. Hydrobiologia 544:249–258

    Article  CAS  Google Scholar 

  • Tao W, Yang L, Mayden RL, He S (2019) Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. Sci China Life Sci 62:553–565

    Article  PubMed  Google Scholar 

  • Tominaga K, Nakajima J, Watanabe K (2016) Cryptic divergence and phylogeography of the pike gudgeon Pseudogobio esocinus (Teleostei: Cyprinidae): a comprehensive case of freshwater phylogeography in Japan. Ichthyol Res 63:79–93

    Article  Google Scholar 

  • Tominaga K, Nagata N, Kitamura J, Watanabe K, Sota T (2020) Phylogeography of the bitterling Tanakia lanceolata (Teleostei: Cyprinidae) in Japan inferred from mitochondrial cytochrome b gene sequences. Ichthyol Res 67:105–116

    Article  Google Scholar 

  • Tsubokawa K (1988) Zoogeographical consideration on the freshwater fish fauna of the Okayama Region, Japan. Bull Kurashiki Mus Nat Hist 3:1–30

    Google Scholar 

  • Watanabe K (2012) Faunal structure of Japanese freshwater fishes and its artificial disturbance. Environ Biol Fishes 94:533–547

    Article  Google Scholar 

  • Watanabe K (2013) Chapter 1. Origin and diversification of freshwater fishes in Lake Biwa. In: Okuda N, Watanabe K, Fukumori K, Nakano S, Nakazawa T (eds) Biodiversity in aquatic systems and environments: Lake Biwa. Springer, Dordrecht, pp 1–19

    Google Scholar 

  • Watanabe K, Takahashi H (2010) Tansuigyorui chiri no shizenshi (Natural history of freshwater fish geography). Hokkaido University Press, Sapporo

    Google Scholar 

  • Watanabe K, Takahashi H, Kitamura A, Yokoyama R, Kitagawa T, Takeshima H, Sato S, Yamamoto S, Takehana Y, Mukai T, Ohara K, Iguchi K (2006) Biogeographical history of Japanese freshwater fishes: phylogeographic approaches and perspectives. Jpn J Ichthyol 53:1–38

    Google Scholar 

  • Watanabe K, Takeshima H, Iwata A, Abe T, Uehara K, Kakioka R, Kihira D, Nishida M (2008) Isolation and characterisation of 39 microsatellite loci in the endangered Japanese loach Leptobotia curta. Mol Ecol Resour 8:145–148

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Abe T, Iwata A (2009) Phylogenetic position and generic status of the Japanese botiid loach. Ichthyol Res 56:421–425

    Article  Google Scholar 

  • Watanabe K, Kano Y, Takahashi H, Mukai T, Kakioka R, Tominaga K (2010) GEDIMAP: a database of genetic diversity for Japanese freshwater fishes. Ichthyol Res 57:107–109

    Article  Google Scholar 

  • Watanabe K, Abe T, Iwata A, Shimizu T, Hosoya K (2015) Parabotia curtus. The IUCN Red List of threatened species 2015: e.T11661A83606443. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T11661A83606443.en. Accessed 22 Nov 2021

  • Watanabe K, Tominaga K, Nakajima J, Kakioka R, Tabata R (2017) Chapter 7. Japanese freshwater fishes: biogeography and cryptic diversity. In: Motokawa M, Kajihara H (eds) Species diversity of animals in Japan, diversity and commonality in animals. Springer, Dordrecht, pp 183–227

    Chapter  Google Scholar 

Download references

Acknowledgments

We deeply thank Masanari Matsuda (Lake Biwa Museum) and Kazuhiko Uehara (Biodiversity Center, Osaka) for providing materials and useful information, and the Kinki Regional Office and the Chugoku–Shikoku Regional Office of the Ministry of the Environment, Japan, Agency for Cultural Affairs, Japan, Kameoka City, Okayama City, Kyoto Prefecture, and Okayama Prefecture for their support and permission. This work was partly supported by the Keidanren Nature Conservation Fund, the Fisheries Agency of Japan, and JSPS KAKENHI (nos. 18570086, 21370035, and 20H030090). This study complies with the current laws of Japan. We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutoshi Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 38 KB)

Supplementary file2 (TIF 2195 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ido, K., Abe, T., Iwata, A. et al. The origin and population divergence of Parabotia curtus (Botiidae: Cypriniformes), a relict loach in Japan. Ichthyol Res 70, 256–267 (2023). https://doi.org/10.1007/s10228-022-00884-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-022-00884-z

Keywords

Navigation