Skip to main content
Log in

Adaptive Wavelet Methods for Linear and Nonlinear Least-Squares Problems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The adaptive wavelet Galerkin method for solving linear, elliptic operator equations introduced by Cohen et al. (Math Comp 70:27–75, 2001) is extended to nonlinear equations and is shown to converge with optimal rates without coarsening. Moreover, when an appropriate scheme is available for the approximate evaluation of residuals, the method is shown to have asymptotically optimal computational complexity. The application of this method to solving least-squares formulations of operator equations \(G(u)=0\), where \(G:H \rightarrow K'\), is studied. For formulations of partial differential equations as first-order least-squares systems, a valid approximate residual evaluation is developed that is easy to implement and quantitatively efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Barinka, W. Dahmen, and R. Schneider. Fast computation of adaptive wavelet expansions. Numer. Math., 105(4):549–589, 2007.

    Google Scholar 

  2. P. Binev. Adaptive methods and near-best tree approximation. In Oberwolfach Reports, volume 29, pages 1669–1673. 2007.

  3. P. Binev and R. DeVore. Fast computation in adaptive tree approximation. Numer. Math., 97(2):193–217, 2004.

    Google Scholar 

  4. K. Bittner and K. Urban. Adaptive wavelet methods using semiorthogonal spline wavelets: sparse evaluation of nonlinear functions. Appl. Comput. Harmon. Anal., 24(1):94–119, 2008.

    Google Scholar 

  5. P. B. Bochev and M. D. Gunzburger. Least-squares finite element methods, volume 166 of Applied Mathematical Sciences. Springer, New York, 2009.

  6. Z. Cai, T. A. Manteuffel, and S. F. McCormick. First-order system least squares for second-order partial differential equations. II. SIAM J. Numer. Anal., 34(2):425–454, 1997.

    Google Scholar 

  7. N.G. Chegini and R.P. Stevenson. The adaptive tensor product wavelet scheme: Sparse matrices and the application to singularly perturbed problems. IMA J. Numer. Anal., 32(1):75–104, 2011.

    Google Scholar 

  8. N.G. Chegini and R.P. Stevenson. Adaptive wavelets schemes for parabolic problems: Sparse matrices and numerical results. SIAM J. Numer. Anal., 49(1):182–212, 2011.

    Google Scholar 

  9. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comp., 70:27–75, 2001.

    Google Scholar 

  10. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II—Beyond the elliptic case. Found. Comput. Math., 2(3):203–245, 2002.

    Google Scholar 

  11. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal., 41:1785–1823, 2003.

    Google Scholar 

  12. A. Cohen, W. Dahmen, and R. DeVore. Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal., 35(2):279–303 (electronic), 2003.

    Google Scholar 

  13. W. Dahmen, A. Kunoth, and R. Schneider. Wavelet least squares methods for boundary value problems. SIAM J. Numer. Anal., 39(6):1985–2013, 2002.

    Google Scholar 

  14. W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval—stability and moment conditions. Appl. Comp. Harm. Anal., 6:132–196, 1999.

    Google Scholar 

  15. W. Dahmen, R. Schneider, and Y. Xu. Nonlinear functionals of wavelet expansions–adaptive reconstruction and fast evaluation. Numer. Math., 86(1):49–101, 2000.

    Google Scholar 

  16. P. Deuflhard. Newton methods for nonlinear problems. Affine invariance and adaptive algorithms, volume 35 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2004.

  17. T.J. Dijkema and R.P. Stevenson. A sparse Laplacian in tensor product wavelet coordinates. Numer. Math., 115(3):433–449, 2010.

    Google Scholar 

  18. T. Gantumur. An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems. J. Comput. Appl. Math., 211(1):90–102, 2008.

    Google Scholar 

  19. T. Gantumur, H. Harbrecht, and R.P. Stevenson. An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp., 76:615–629, 2007.

    Google Scholar 

  20. T. Gantumur and R.P. Stevenson. Computation of differential operators in wavelet coordinates. Math. Comp., 75:697–709, 2006.

    Google Scholar 

  21. T. Gantumur and R.P. Stevenson. Computation of singular integral operators in wavelet coordinates. Computing, 76:77–107, 2006.

    Google Scholar 

  22. J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970.

  23. J. Pousin and J. Rappaz. Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math., 69(2):213–231, 1994.

    Google Scholar 

  24. T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996.

  25. R.P. Stevenson. Piecewise linear (pre-)wavelets on non-uniform meshes. In Multigrid methods V (Stuttgart, 1996), volume 3 of Lect. Notes Comput. Sci. Eng., pages 306–319. Springer, Berlin, 1998.

  26. R.P. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal., 35(5):1110–1132, 2004.

    Google Scholar 

  27. R.P. Stevenson. Adaptive wavelet methods for solving operator equations: An overview. In R.A. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pages 543–598. Springer, Berlin, 2009.

  28. R.P. Stevenson. First Order System Least Squares (FOSLS) with inhomogeneous boundary conditions. IMA. J. Numer. Anal., 2013.

  29. R.P. Stevenson and M. Werner. Computation of differential operators in aggregated wavelet frame coordinates. IMA J. Numer. Anal., 28(2):354–381, 2008.

    Google Scholar 

  30. K. Urban. Wavelet bases in \(H\)(div) and \(H\)(curl). Math. Comp., 70(234):739–766, 2001.

  31. J. Vorloeper. Adaptive Wavelet Methoden für Operator Gleichungen, Quantitative Analyse und Softwarekonzepte. PhD thesis, RTWH Aachen, 2009. VDI Verlag GmbH, Düsseldorf, ISBN 987-3-18-342720-8.

  32. Y. Xu and Q. Zou. Adaptive wavelet methods for elliptic operator equations with nonlinear terms. Adv. Comput. Math., 19(1–3):99–146, 2003. Challenges in computational mathematics (Pohang, 2001).

    Google Scholar 

  33. Y. Xu and Q. Zou. Tree wavelet approximations with applications. Sci. China Ser. A, 48(5):680–702, 2005.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Nabi Chegini for helpful discussions and for performing the numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Stevenson.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, R. Adaptive Wavelet Methods for Linear and Nonlinear Least-Squares Problems. Found Comput Math 14, 237–283 (2014). https://doi.org/10.1007/s10208-013-9184-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-013-9184-6

Keywords

Mathematics Subject Classification

Navigation