Skip to main content
Log in

Normal Multi-scale Transforms for Curves

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Extending upon Daubechies et al. (Constr. Approx. 20:399–463, 2004) and Runborg (Multiscale Methods in Science and Engineering, pp. 205–224, 2005), we provide the theoretical analysis of normal multi-scale transforms for curves with general linear predictor S, and a more flexible choice of normal directions. The main parameters influencing the asymptotic properties (convergence, decay estimates for detail coefficients, smoothness of normal re-parametrization) of this transform are the smoothness of the curve, the smoothness of S, and its order of exact polynomial reproduction. Our results give another indication why approximating S may not be the first choice in compression applications of normal multi-scale transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Baraniuk, M. Janssen, S. Lavu, Multiscale approximation of piecewise smooth two-dimensional functions using normal triangulated meshes, Appl. Comput. Harmon. Anal. 19, 92–130 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Berger, Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166, 21–27 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Binev, N. Dyn, R.A. DeVore, N. Dyn, Adaptive approximation of curves, in Approximation Theory (Acad. Publ. House, Sofia, 2004), pp. 43–57.

    Google Scholar 

  4. A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary Subdivision, Memoirs AMS, vol. 93 (Am. Math. Soc., Providence, 1991).

    Google Scholar 

  5. I. Daubechies, O. Runborg, W. Sweldens, Normal multiresolution approximation of curves, Constr. Approx. 20, 399–463 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Dyn, M.S. Floater, K. Hormann, A C 2 four-point subdivision scheme with fourth order accuracy and its extensions, in Mathematical Methods for Curves and Surfaces, ed. by M. Dæhlen, K. Mørken, L.L. Schumaker (Nashboro Press, Brentwood, 2005), pp. 145–156.

    Google Scholar 

  7. N. Dyn, K. Hormann, M.A. Sabin, Z. Shen, Polynomial reproduction by symmetric subdivision schemes, J. Approx. Theory 155, 28–42 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Dyn, D. Levin, Subdivision schemes in geometric modelling, Acta Numer. 11, 73–144 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Friedel, A. Khodakovski, P. Schröder, Variational normal meshes, ACM Trans. Graph. 23, 1061–1073 (2004).

    Article  Google Scholar 

  10. P. Grohs, A general proximity analysis of nonlinear subdivision schemes, SIAM J. Math. Anal. 42, 729–750 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Guskov, K. Vidimce, W. Sweldens, P. Schröder, Normal meshes, in Computer Graphics (SIGGRAPH’00: Proceedings), ed. by K. Akeley (ACM, New York, 2000), pp. 95–102.

    Google Scholar 

  12. A. Khodakovsky, I. Guskov, Compression of normal meshes, in Geometric Modeling for Scientific Visualization (Springer, Berlin, 2003), pp. 189–207.

    Google Scholar 

  13. J.M. Lane, R.F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 2, 35–46 (1980).

    Article  MATH  Google Scholar 

  14. S. Lavu, H. Choi, R. Baraniuk, Geometry compression of normal meshes using rate-distortion algorithms, in Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ed. by L. Kobbelt, P. Schröder, H. Hoppe (Eurographics Association, Aire-la-Ville, 2003), pp. 52–61.

    Google Scholar 

  15. O. Runborg, Introduction to normal multiresolution analysis, in Multiscale Methods in Science and Engineering, ed. by B. Engquist, P. Lötstedt, O. Runborg. Lecture Notes in Computational Science and Engineering, vol. 44 (Springer, Heidelberg, 2005), pp. 205–224.

    Chapter  Google Scholar 

  16. O. Runborg, Fast interface tracking via a multiresolution representation of curves and surfaces, Commun. Math. Sci. 7, 365–389 (2009).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Oswald.

Additional information

Communicated by Nira Dyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harizanov, S., Oswald, P. & Shingel, T. Normal Multi-scale Transforms for Curves. Found Comput Math 11, 617–656 (2011). https://doi.org/10.1007/s10208-011-9104-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9104-6

Keywords

Mathematics Subject Classification (2000)

Navigation