Skip to main content
Log in

Life cycle assessment of thermal insulation materials produced from waste textiles

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study aims to produce sustainable thermal insulation materials from waste textiles and evaluate their environmental impact using life cycle assessment (LCA). In this study, three different insulation panels were produced using textile wastes at different percentages, temperatures, and pressure conditions. They are composed of 100% recycled cotton (N1), 90% recycled cotton/10% polylactic acid (PLA) (N2), and 42.5% recycled cotton/42.5% recycled nylon/15% PLA (N3). A cradle-to-gate LCA (starting from waste textile collection to the production of thermal insulation panels) was conducted to assess the key environmental impacts based on the ISO 14040/44 guidelines. Test results revealed that insulation materials produced from waste textiles have excellent thermal insulation properties. The obtained thermal conductive values of N1, N2, and N3 insulation materials are 0.027, 0.028, and 0.036 W/mK, respectively. In the case of environmental impacts, results showed that N1 and N2 insulation materials had lower environmental impacts than N3. Environmental impacts of produced insulation panels were also compared with some commercially available insulation materials (stone wool, recycled PET bottle, and flax). During comparison, the thickness of materials is adjusted to keep their thermal resistance value same (R = 1 m2 K/W). The LCA results showed that the insulation panels N1 and N2 have eleven and three times (respectively) lower global warming (GW) potential than stone wool and sixteen and four times (respectively) lower GW potential than flax-based insulation panels and, therefore, could be considered as comparatively higher eco-friendly products. This LCA study also exposed a clear insight into the environmental impacts of several stages of the production process, which may be helpful to optimize or modify processes and produce more eco-friendlier thermal insulation material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

N1:

Insulation materials produced from 100% recycled cotton

N2:

Insulation materials produced from 90% recycled cotton &10% PLA

N3:

Insulation materials produced from 42.5% recycled cotton, 42.5% recycled nylon, and 15% PLA

t :

Thickness (m)

A :

Area (m2)

w :

Weight (kg)

ρ :

Bulk density (kg/ m3)

R :

Thermal resistance (m2K/W)

Q :

Heat flux (W/ m2)

k :

Thermal conductivity (W/mK)

f.u. :

The amount of thermal insulation materials (kg) required to meet the thermal resistance of 1 m2 K/W

LCA:

Life cycle assessment

PLA:

Polylactic acid

ISO :

International Organization for Standardization

PET:

Polyethylene terephthalate

XPS:

Extruded polystyrene

EPS:

Expanded polystyrene

f.u.:

Functional unit

GW:

Global warming

Ad:

Acidification

Cr:

Carcinogenic

NC:

Noncarcinogenic

RE:

Respiratory effects

Eu:

Eutrophication

OD:

Ozone depletion

Ec:

Ecotoxicity

Sm:

Smog formation

PM2.5 :

Particles with a diameter of less than 2.5 µm

References

  1. Islam S, Bhat G (2019) Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J Environ Manage 251:109536. https://doi.org/10.1016/j.jenvman.2019.109536

    Article  PubMed  Google Scholar 

  2. Islam S, El Messiry M, Sikdar PP et al (2022) Microstructure and performance characteristics of acoustic insulation materials from post-consumer recycled denim fabrics. J Ind Text 51:6001S-6027S. https://doi.org/10.1177/1528083720940746

    Article  CAS  Google Scholar 

  3. Ozel M (2012) Cost analysis for optimum thicknesses and environmental impacts of different insulation materials. Energy Build 49:552–559. https://doi.org/10.1016/j.enbuild.2012.03.002

    Article  Google Scholar 

  4. Asdrubali F, D’Alessandro F, Schiavoni S (2015) A review of unconventional sustainable building insulation materials. Sustain Mater Technol 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002

    Article  CAS  Google Scholar 

  5. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40:394–398. https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  6. Ürge-Vorsatz D, Cabeza LF, Serrano S et al (2015) Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev 41:85–98. https://doi.org/10.1016/j.rser.2014.08.039

    Article  Google Scholar 

  7. Huberman N, Pearlmutter D (2008) A life-cycle energy analysis of building materials in the Negev desert. Energy Build 40:837–848. https://doi.org/10.1016/j.enbuild.2007.06.002

    Article  Google Scholar 

  8. Cozzarini L, Marsich L, Ferluga A, Schmid C (2020) Life Cycle Analysis of a novel thermal insulator obtained from recycled glass waste. Dev Built Environ 3:1–7. https://doi.org/10.1016/j.dibe.2020.100014

    Article  Google Scholar 

  9. Hadded A, Benltoufa S, Fayala F, Jemni A (2016) Thermo physical characterisation of recycled textile materials used for building insulating. J Build Eng 5:34–40. https://doi.org/10.1016/j.jobe.2015.10.007

    Article  Google Scholar 

  10. Schiavoni S, Bianchi F, Asdrubali F (2016) Insulation materials for the building sector: A review and comparative analysis. Renew Sustain Energy Rev 62:988–1011. https://doi.org/10.1016/j.rser.2016.05.045

    Article  Google Scholar 

  11. Schmidt AC, Jensen AA, Clausen AU et al (2004) A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax. Int J Life Cycle Assess 9:53–66. https://doi.org/10.1007/BF02978536

    Article  Google Scholar 

  12. Intini F, Kühtz S (2011) Recycling in buildings: an LCA case study of a thermal insulation panel made of polyester fiber, recycled from post-consumer PET bottles. Int J Life Cycle Assess 16:306–315

    Article  CAS  Google Scholar 

  13. Tingley DD, Hathway A, Davison B (2015) An environmental impact comparison of external wall insulation types. Build Environ 85:182–189. https://doi.org/10.1016/j.buildenv.2014.11.021

    Article  Google Scholar 

  14. Patnaik A, Mvubu M, Muniyasamy S et al (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161–169. https://doi.org/10.1016/j.enbuild.2015.01.056

    Article  Google Scholar 

  15. Berardi U, Iannace G (2015) Acoustic characterization of natural fibers for sound absorption applications. Build Environ 94:840–852. https://doi.org/10.1016/j.buildenv.2015.05.029

    Article  Google Scholar 

  16. (2017) GFA. In: Pulse Fash. Ind. https://www.globalfashionagenda.com/initiatives/pulse/#. Accessed 12 Apr 2019

  17. Wang Y (2010) Fiber and textile waste utilization. Waste and Biomass Valoriz 1:135–143

    Article  Google Scholar 

  18. (2023) Climate change. In: Eur. Comm. https://climate.ec.europa.eu/climate-change_en

  19. Chen X, Memon HA, Wang Y et al (2021) Circular Economy and sustainability of the clothing and textile Industry. Mater Circ Econ 3:1–9. https://doi.org/10.1007/s42824-021-00026-2

    Article  Google Scholar 

  20. Anjaria MK (1988) Thermal insulation properties of low density nonwoven battings. North Carolina State University, Raleigh

    Google Scholar 

  21. Rafiee MA, Rafiee J, Srivastava I et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  CAS  PubMed  Google Scholar 

  22. Dissanayake DGK, Weerasinghe DU, Wijesinghe KAP, Kalpage KMDMP (2018) Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manag 79:356–361. https://doi.org/10.1016/j.wasman.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  23. Ricciardi P, Belloni E, Cotana F (2014) Innovative panels with recycled materials: thermal and acoustic performance and life cycle assessment. Appl Energy 134:150–162. https://doi.org/10.1016/j.apenergy.2014.07.112

    Article  ADS  Google Scholar 

  24. Schmidt AC, Jensen AA, Clausen AU et al (2004) A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax. Int J Life Cycle Assess 9:122–129. https://doi.org/10.1007/BF02978571

    Article  CAS  Google Scholar 

  25. Binici H, Eken M, Kara M, Dolaz M (2013) An environment-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers. In: International Conference on Renewable Energy Research and Applications. IEEE, pp 833–846

  26. Zhou X, Zheng F, Li H, Lu C (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build 42:1070–1074. https://doi.org/10.1016/j.enbuild.2010.01.020

    Article  Google Scholar 

  27. Gounni A, Mabrouk MT, El Wazna M et al (2019) Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Appl Therm Eng 149:475–483. https://doi.org/10.1016/j.applthermaleng.2018.12.057

    Article  Google Scholar 

  28. Mehrzad S, Taban E, Soltani P et al (2022) Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings. Build Environ 211:108753. https://doi.org/10.1016/j.buildenv.2022.108753

    Article  Google Scholar 

  29. La Rosa AD, Recca A, Gagliano A et al (2014) Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Constr Build Mater 55:406–414. https://doi.org/10.1016/j.conbuildmat.2014.01.054

    Article  Google Scholar 

  30. Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002

    Article  Google Scholar 

  31. Srivastava A (2023) Common insulation materials used in buildings. In: Nearby Eng. https://www.ny-engineers.com/blog/common-insulation-materials-used-in-buildings

  32. Bhuiyan MAR, Ali A, Akter H et al (2023) Flame resistance and heat barrier performance of sustainable plain-woven jute composite panels for thermal insulation in buildings. Appl Energy 345:121317. https://doi.org/10.1016/j.apenergy.2023.121317

    Article  CAS  Google Scholar 

  33. (2017) ASTM F1868 - 17. In: Stand. Test Method Therm. Evaporative Resist. Cloth. Mater. Using a Sweating Hot Plate. https://www.astm.org/Standards/F1868. Accessed 10 May 2022

  34. Islam S, Bhat G (2023) A model for predicting thermal conductivity of porous composite materials. Heat Mass Transf 59:2023–2034. https://doi.org/10.1007/s00231-023-03380-w

    Article  ADS  CAS  Google Scholar 

  35. (2006) ISO 14040. In: Environ. Manag. — Life cycle Assess. — Princ. Framew. https://www.iso.org/standard/37456.html

  36. (2006) ISO 14044. In: Environ. Manag. -- Life cycle Assess. -- Requir. Guidel. https://www.iso.org/standard/38498.html

  37. Llantoy Huamán NK (2019) Comparative Life Cycle Assessment of insulation materials for the building sector. https://repositori.udl.cat/bitstream/handle/10459.1/67970/nllantoyh.pdf?sequence=1

  38. Azari R (2014) Integrated energy and environmental life cycle assessment of office building envelopes. Energy Build 82:156–162. https://doi.org/10.1016/j.enbuild.2014.06.041

    Article  Google Scholar 

  39. Rebitzer G, Ekvall T, Frischknecht R et al (2004) Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ Int 30:701–720. https://doi.org/10.1016/j.envint.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  40. Kono J, Goto Y, Ostermeyer Y et al (2016) Factors for eco-efficiency improvement of thermal insulation materials. Key Eng Mater 678:1–13

    Article  Google Scholar 

  41. Brunšek R, Kopitar D, Schwarz I, Marasović P (2023) Biodegradation Properties of Cellulose Fibers and PLA Biopolymer. Polymers (Basel) 15:3532. https://doi.org/10.3390/polym15173532

    Article  CAS  PubMed  Google Scholar 

  42. Sülar V, Devrim G (2019) Biodegradation behaviour of different textile fibres: visual, morphological, structural properties and soil analyses. Fibres Text East Eur. https://doi.org/10.5604/01.3001.0012.7751

    Article  Google Scholar 

  43. An Y, Kajiwara T, Padermshoke A et al (2023) Environmental Degradation of Nylon, Poly (ethylene terephthalate)(PET), and Poly (vinylidene fluoride)(PVDF) Fishing Line Fibers. ACS Appl Polym Mater 5:4427–4436. https://doi.org/10.1021/acsapm.3c00552

    Article  CAS  Google Scholar 

  44. Schlanbusch RD, Jelle BP, Sandberg LIC et al (2014) Integration of life cycle assessment in the design of hollow silica nanospheres for thermal insulation applications. Build Environ 80:115–124. https://doi.org/10.1016/j.buildenv.2014.05.010

    Article  Google Scholar 

  45. Kuczenski B, Geyer R (2013) PET bottle reverse logistics—environmental performance of California’s CRV program. Int J Life Cycle Assess 18:456–471. https://doi.org/10.1007/s11367-012-0495-7

    Article  CAS  Google Scholar 

  46. (2020) Joful Industry. In: Old Clothes Waste Text. Shredd. Mach. http://www.industrialwasteshredder.com/sale-10461514-old-clothes-waste-textile-shredder-machine-scrap-fiber-textile-waste-cutting-machine.html

  47. (2020) Qingdao Shinejary Textile Machinery Co., Ltd. In: Text. Fabr. waste Recycl. Mach. Spinn. https://shinejary.en.alibaba.com/productgrouplist-816189902/Recying_machine.html?spm=a2700.icbuShop.88.45.200532f8BCrtko

  48. (2020) Changshu Chenyang Nonwoven Machinery Co., Ltd. In: High Qual. Nonwoven Needle Punching Felt Mach. https://cs-chenyang.en.alibaba.com/productgrouplist-806809212/Needle_Punch_solution.html?spm=a2700.icbuShop.88.26.2804f3beFApE02

  49. (2017) TPS. In: Ind. Therm. B. https://www.thermalproductsolutions.com/data/uploads/contentblock/Brochures/4213 TPS Industrial Thermal Book.pdf

  50. Wendin M (2016) LCA on Recycling Cotton. https://www.researchgate.net/publication/319710965%0D. Accessed 6 June 2023

  51. Frazer L (2004) New spin on an old fiber. Environ Health Perspect 112:754–757. https://doi.org/10.1289/ehp.112-a754

    Article  Google Scholar 

  52. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. https://doi.org/10.1016/S0141-3910(02)00372-5

    Article  CAS  Google Scholar 

  53. Murphy CW, Kendall A (2013) Life cycle inventory development for corn and stover production systems under different allocation methods. Biomass Bioenerg 58:67–75. https://doi.org/10.1016/j.biombioe.2013.08.008

    Article  CAS  Google Scholar 

  54. Landis AE (2007) The environmental impacts of biobased production. University of Illinois at Chicago. Thesis. https://hdl.handle.net/10027/13163

  55. (2012) NREL. In: U.S. Life Cycle Invent. Database. https://www.nrel.gov/lci/

  56. (2020) Cissco Machinery Co., Ltd. In: High Effic. Polyest. Staple Fibre Prod. Mach. https://www.alibaba.com/product-detail/High-Efficiency-Polyester-Staple-Fibre-Producing_1653737133.html?spm=a2700.7724857.normalList.25.2ebc6fc3b8ol3r&bypass=true

  57. Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy 13:687–696. https://doi.org/10.1007/s10098-010-0338-9

    Article  CAS  Google Scholar 

  58. Islam S, Bhat G, Sikdar P (2023) Thermal and acoustic performance evaluation of 3D-Printable PLA materials. J Build Eng 67:105979. https://doi.org/10.1016/j.jobe.2023.105979

    Article  Google Scholar 

  59. (2023) Energy Education. In: Univ. CALGARY. https://energyeducation.ca/encyclopedia/Natural_gas_power_plant

  60. Córdoba P (2018) Emissions of inorganic trace pollutants from coal power generation. In: Olvera JDR (ed) Air Pollution—Monitoring, Quantification and Removal of Gases and Particles. IntechOpen, London, UK, pp 127–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafiqul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 472 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Bhat, G. & Mani, S. Life cycle assessment of thermal insulation materials produced from waste textiles. J Mater Cycles Waste Manag 26, 1071–1085 (2024). https://doi.org/10.1007/s10163-023-01882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01882-7

Keywords

Navigation