Skip to main content

Advertisement

Log in

Supporting circular economy through the use of red ceramic waste as supplementary cementitious material in structural concrete

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper investigates the potential application of red ceramic waste as supplementary cementitious materials in structural concrete as a strategy to implement a circular economy in the Brazilian construction industry from a sustainable infrastructure perspective. The experimental program comprehends the waste characterization and application in concrete mixtures produced with different w/b (0.35, 0.45, and 0.55) and Portland cement replacement (5%, 10%, 20%, and 40%). Eco-efficiency intensity indicators considering cement consumption, carbon dioxide emission, and embodied energy complement the structural concrete assessment. Concrete mixtures with up to 40% of waste, combined with w/b 0.35 and 0.45, did not compromise the concrete structural performance regarding compressive strength. The relatively low water absorption in concrete mixtures produced with up to 40% Portland replacement by red ceramic waste suggests concrete ability to restrain water and vapor ingress on a satisfactory level. Structural concrete with Portland cement replacement by 20% or 40% of waste showed better performance from the eco-efficiency perspective. Structural concrete with Portland cement replacement by 20% or 40% of waste can preserve mechanical properties, reduce carbon dioxide release, and implement a circular economy in the construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. IEA. Technology Roadmap: Technology Roadmap Low-Carbon Transition in the Cement Industry. Paris; 2020.

  2. UNEP. Emissions Gap Emissions Gap Report 2020 [Internet]. 2020. https://www.unenvironment.org/interactive/emissions-gap-report/2019/

  3. Bataille C. Low and zero emissions in the steel and cement industries: Barriers, technologies and policies [Internet]. Paris; 2019. http://oe.cd/ggsd2019

  4. Cantero B, Sáez del Bosque IF, Matías A, Sánchez de Rojas MI, Medina C. Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design. Arch Civ Mech Eng. Elsevier B.V.; 2019;19:1338–52.

  5. Amin M, Tayeh BA, Agwa IS. Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. J Clean Prod [Internet]. 2020 [cited 2020 Jul 22];273:123073. https://linkinghub.elsevier.com/retrieve/pii/S0959652620331188

  6. Oliveira TCF, Dezen BGS, Possan E. Use of concrete fine fraction waste as a replacement of Portland cement. J Clean Prod [Internet]. Elsevier Ltd; 2020;273:123126. https://doi.org/10.1016/j.jclepro.2020.123126

  7. Sharma U, Gupta N, Saxena KK. Comparative study on the effect of industrial by-products as a replacement of cement in concrete. Mater Today Proc [Internet]. 2020 [cited 2020 Jul 21]. https://linkinghub.elsevier.com/retrieve/pii/S2214785320346691

  8. Fang HY, Liu FL, Yang JH. High-quality coarse aggregate recycling from waste concrete by impact crushing. J Mater Cycles Waste Manag [Internet]. Springer Japan; 2020;22:887–96. https://doi.org/10.1007/s10163-020-00984-w

  9. Liu F, Yu YY, Li LJ, Zeng L. Experimental study on reuse of recycled concrete aggregates for load-bearing components of building structures. J Mater Cycles Waste Manag. Springer Japan; 2018;20:995–1005.

  10. Roque AJ, Rodrigues GM, da Silva PF. Re-cycling of construction and demolition waste and steel slag: characterization of the durability. J Mater Cycles Waste Manag [Internet]. Springer Japan; 2020;22:1699–711. https://doi.org/10.1007/s10163-020-01061-y

  11. Ghanbari M, Abbasi AM, Ravanshadnia M. Production of natural and recycled aggregates: the environmental impacts of energy consumption and CO2 emissions. J Mater Cycles Waste Manag. Springer Japan; 2018;20:810–22.

  12. Pacheco-Torgal F, Jalali S (2010) Reusing ceramic wastes in concrete. Constr Build Mater 24:832–838

    Article  Google Scholar 

  13. Wong CL, Mo KH, Yap SP, Alengaram UJ, Ling TC. Potential use of brick waste as alternate concrete-making materials: a review. J. Clean. Prod. Elsevier Ltd; 2018. p. 226–39.

  14. Zong L, Fei Z, Zhang S. Permeability of recycled aggregate concrete containing fly ash and clay brick waste. J Clean Prod [Internet]. 2014;70:175–82. https://doi.org/10.1016/j.jclepro.2014.02.040

  15. Wirquin E, Hadjieva-Zaharieva R, Buyle-Bodin F (2000) Utilisation de l’absorption d’eau des bétons comme critères de leur durabilité—Application aux bétons de granulats recyclésUse of water absorption by concrete as a criterion of the durability of concrete-application to recycled aggregated concrete. Mater Struct 33:403–408

    Article  Google Scholar 

  16. Nepomuceno MCS, Isidoro RAS, Catarino JPG (2018) Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Constr Build Mater Elsevier Ltd 165:284–294

    Article  Google Scholar 

  17. Zhu L, Zhu Z. Reuse of Clay Brick Waste in Mortar and Concrete. Adv Mater Sci Eng. 2020;2020.

  18. Kim HS, Kim B, Kim KS, Kim JM. Quality improvement of recycled aggregates using the acid treatment method and the strength characteristics of the resulting mortar. J Mater Cycles Waste Manag. Springer Japan; 2017;19:968–76.

  19. Hoppe Filho JH, Pires CAO, Leite OD, Garcez MR, Medeiros MHF (2021) Characterization of red ceramic waste for application as mineral addition in portland cement. J Mater Civ Eng 33:1–9

    Article  Google Scholar 

  20. Matias G, Faria P, Torres I. Lime mortars with heat treated clays and ceramic waste : A review. Constr Build Mater [Internet]. Elsevier Ltd; 2014;73:125–36. https://doi.org/10.1016/j.conbuildmat.2014.09.028

  21. Toledo Filho RD, Gonçalves JP, Americano BB, Fairbairn EMR (2007) Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem Concr Res 37:1357–1365

    Article  Google Scholar 

  22. Schackow A, Stringari D, Senff L, Correia SL, Segadães AM. Composites Influence of fired clay brick waste additions on the durability of mortars. Cem Concr Compos [Internet]. Elsevier Ltd; 2015;62:82–9. https://doi.org/10.1016/j.cemconcomp.2015.04.019

  23. Duchesne J. Alternative supplementary cementitious materials for sustainable concrete structures : a review on characterization and properties. Waste and Biomass Valorization [Internet]. Springer Netherlands; 2021;12:1219–36. https://doi.org/10.1007/s12649-020-01068-4

  24. Kulovaná T, Vejmelková E, Pokorný J, Siddique JA, Keppert M, Rovnaníková P et al (2016) Engineering properties of composite materials containing waste ceramic dust from advanced hollow brick production as a partial replacement of Portland cement. J Build Phys 40:17–34

    Article  Google Scholar 

  25. UNEnvironment, Scrivener KL, John VM, Gartner EM. Cement and Concrete Research Eco-efficient cements : Potential economically viable solutions for a low-CO 2 cement-based materials industry ☆. Cem Concr Res [Internet]. Elsevier; 2018;114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

  26. SNIC. ROADMAP tecnológico do cimento: potencial de redução das emissões de carbono da indústria do cimento brasileira até 2050. Rio de JAneiro; 2020.

  27. MCTIC. Estimativas anuais de emissões de gases de efeito estufa no Brasil 2020. 2019.

  28. Zhou D, Wang R, Tyrer M, Wong H, Cheeseman C (2017) Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. J Clean Prod 168:1180–1192

    Article  Google Scholar 

  29. Cardinaud G, Rozière E, Martinage O, Loukili A, Barnes-davin L, Paris M, et al. Calcined clay – Limestone cements : Hydration processes with high and low-grade kaolinite clays. Constr Build Mater [Internet]. Elsevier Ltd; 2021;277:122271. https://doi.org/10.1016/j.conbuildmat.2021.122271

  30. Carvalho PSL, Mesquita PPD, Melo L (2016) Panoramas setoriais: cimento. BNDES, Rio de Janeiro

    Google Scholar 

  31. Juenger MCG, Snellings R, Bernal SA. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. Elsevier Ltd; 2019. p. 257–73.

  32. Xiao J, Ma Z, Sui T, Akbarnezhad A, Duan Z. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J Clean Prod [Internet]. Elsevier Ltd; 2018;188:720–31. https://doi.org/10.1016/j.jclepro.2018.03.277

  33. Carvalho CM, Barbosa NP, Bezerra UT, Simas TB. Red ceramic industry residues used to produce Portland cement. Case Stud Constr Mater [Internet]. Elsevier Ltd.; 2020;13:e00449. https://doi.org/10.1016/j.cscm.2020.e00449

  34. Dixit A, Du H, Pang SD. Performance of mortar incorporating calcined marine clays with varying kaolinite content. J Clean Prod [Internet]. Elsevier Ltd; 2021;282:124513. https://doi.org/10.1016/j.jclepro.2020.124513

  35. Bediako M (2018) Pozzolanic potentials and hydration behavior of ground waste clay brick obtained from clamp-firing technology. Case Stud Constr Mater Elsevier Ltd 8:1–7

    Google Scholar 

  36. Msinjili NS, Vogler N, Sturm P, Neubert M, Schröder H-J, Kühne H-C, et al. Calcined brick clays and mixed clays as supplementary cementitious materials : Effects on the performance of blended cement mortars. Constr Build Mater [Internet]. Elsevier Ltd; 2021;266:120990. https://doi.org/10.1016/j.conbuildmat.2020.120990

  37. Ge Z, Wang Y, Sun R, Wu X, Guan Y (2015) Influence of ground waste clay brick on properties of fresh and hardened concrete. Constr Build Mater Elsevier Ltd 98:128–136

    Article  Google Scholar 

  38. Vejmelková E, Keppert M, Rovnaníková P, Ondráček M, Keršner Z, Černý R (2012) Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cem Concr Compos 34:55–61

    Article  Google Scholar 

  39. Ma Z, Tang Q, Wu H, Xu J, Liang C. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cem Concr Compos [Internet]. Elsevier Ltd; 2020;114:103758. https://doi.org/10.1016/j.cemconcomp.2020.103758

  40. Mohammed TU, Hasnat A, Awal MA, Bosunia SZ (2015) Recycling of brick aggregate concrete as coarse aggregate. J Mater Civ Eng 27:1–9

    Article  Google Scholar 

  41. Keshavarz Z, Mostofinejad D (2019) Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr Build Mater Elsevier Ltd 195:218–230

    Article  Google Scholar 

  42. Li S, Gao J, Li Q, Zhao X. Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material. Constr Build Mater [Internet]. Elsevier Ltd; 2021;267:120976. https://doi.org/10.1016/j.conbuildmat.2020.120976

  43. Samadi M, Fahim G, Mohammadhosseini H, Alyousef R. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. J Clean Prod [Internet]. Elsevier Ltd; 2020;266:121825. https://doi.org/10.1016/j.jclepro.2020.121825

  44. Kim YJ, Choi YW. Utilization of waste concrete powder as a substitution material for cement. Constr Build Mater [Internet]. Elsevier Ltd; 2012;30:500–4. https://doi.org/10.1016/j.conbuildmat.2011.11.042

  45. Navrátilová E, Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr. Build. Mater. Elsevier Ltd; 2016. p. 530–9.

  46. Olofinnade OM, Ede AN, Ndambuki JM, Bamigboye GO (2016) Structural properties of concrete containing ground waste clay brick powder as partial substitute for cement. Mater Sci Forum 866:63–67

    Article  Google Scholar 

  47. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci Elsevier Ltd 108:94–101

    Article  Google Scholar 

  48. Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res [Internet]. 2016 [cited 2020 Jul 20];85:1–11. https://doi.org/10.1016/j.cemconres.2016.02.015

  49. Paris JM, Roessler JG, Ferraro CC, Deford HD, Townsend TG (2016) A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod 121:18

    Article  Google Scholar 

  50. Almenares RS, Vizcaíno LM, Damas S, Mathieu A, Alujas A, Martirena F. Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Stud Constr Mater [Internet]. Elsevier; 2017;6:225–32. https://doi.org/10.1016/j.cscm.2017.03.005

  51. Ge Z, Gao Z, Sun R, Zheng L. Mix design of concrete with recycled clay-brick-powder using the orthogonal design method. Constr Build Mater [Internet]. Elsevier Ltd; 2012;31:289–93. https://doi.org/10.1016/j.conbuildmat.2012.01.002

  52. ABNT. NBR 12653 Pozzolanic materials—Requirements. Rio de Janeiro; 2014.

  53. DNER. DNER-ME 093/094 Determination of specific gravity. Brasilia; 1994.

  54. ABNT. NBR 15894–3 Metakaolin for use with Portland cement in concrete, mortar and paste Part 3: Determination of fi neness by the 45 μm test sieve. Rio de Janeiro; 2010.

  55. ABNT. NBR NM 24 Pozzolanic materials—Determination of moisture content. Rio de Janeiro; 2003.

  56. ABNT. NBR NM 18 Portland cement—Chemical anlysis - Determination of loss on ignition. Rio de Janeiro; 2012.

  57. Cox EP (1927) A method of assigning numerical and percentage values to the degree of roundness of sand grains. J Paleontol 1:179–183

    Google Scholar 

  58. ABNT. NBR 5752 Pozzolanic materials—Determination of the performance index with Portland cement at 28 days. Rio de Janeiro; 2014.

  59. ABNT. NBR 16697 Portland cement—Requirements. Rio de Janeiro; 2018.

  60. CEN. EN 197-1 Cement Part 1: Composition, specifications and conformity criteria for common cements. Brussels; 2011.

  61. ABNT. NBR 5751 Pozzolanic Materials–Determination of pozzolanic activity with lime at 7 days. São Paulo; 2015.

  62. ASTM. ASTM C618-19 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete [Internet]. West Conshohocken, Pennsylvania; 2019. www.astm.org

  63. ABNT. NBR 5739 Concrete—Compression test of cylindrical specimens. Rio de Janeiro; 2018.

  64. ABNT. NBR 7222 Concrete and mortar—Determination of the tension strength by diametrical compression of cylindrical test specimens. Rio de Janeiro; 2011.

  65. ABNT. NBR 9779 Mortar and hardened concrete—Determination of water absorption by capillarity. Rio de Janeiro; 2012.

  66. Gao Q, Ma Z, Xiao J, Li F. Effects of imposed damage on the capillary water absorption of recycled aggregate concrete. Adv Mater Sci Eng. 2018;2018.

  67. Durakovic B (2017) Design of experiments application, concepts, examples: State of the art. Period Eng Nat Sci 5:421–439

    Google Scholar 

  68. Dal Molin DCC, Kulalowski MP, Ribeiro JLD (2008) Contribuições ao planejamento de experimentos em projetos de pesquisa de engenharia civil. Amniente Construído 5:37–49

    Google Scholar 

  69. Damineli BL, Kemeid FM, Aguiar PS, John VM. Measuring the eco-efficiency of cement use. Cem Concr Compos [Internet]. Elsevier Ltd; 2010;32:555–62. https://doi.org/10.1016/j.cemconcomp.2010.07.009

  70. Oliveira VCHC, Damineli BL, Agopyan V, John VM (2014) Strategies for the minimization of CO2 emissions from concrete. Ambient Construído 14:167–181

    Article  Google Scholar 

  71. Genç Ö. Energy-Efficient Technologies in Cement Grinding. In: Yilmaz S, Ozmen HB, editors. High Perform Concr Technol Appl [Internet]. 1st ed. London: IntechOpen Limited; 2016. p. 114–39. http://www.intechopen.com/books/trends-in-telecommunications-technologies/gps-total-electron-content-tec-prediction-at-ionosphere-layer-over-the-equatorial-region%0AInTec

  72. SCLCI. Ecoinvent Database [Internet]. Zürich: Swiss Centre for Life Cycle Inventories; 2021. Available from: www.ecoinvent.org/home/

  73. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, et al. Handbook on life cycle assessment. Operational guide to the ISO standards. Dordrecht, Netherlands: Kluwer Academic Publishers; 2002.

  74. Hischier R, Weidema B, Althaus H-J, Bauer C, Doka G, Dones R, et al. Implementation of Life Cycle Impact Assessment Methods. Ecoinvent Report. Dübendorf, Switzerland, 22 pp; 2010.

  75. Potter RO, Carvalho AP, Flores CA, Bologna I. Solos de Santa Catarina [Internet]. Rio de Janeiro: Embrapa Solos; 2004. file:///C:/Users/Philco/Downloads/BPD-46–2004-Santa-Catarina-.pdf

  76. Martínez-García C, Eliche-Quesada D, Pérez-Villarejo L, Iglesias-Godino FJ, Corpas-Iglesias FA. Sludge valorization from wastewater treatment plant to its application on the ceramic industry. J Environ Manage [Internet]. Elsevier Ltd; 2012;95:S343–8. https://doi.org/10.1016/j.jenvman.2011.06.016

  77. Godoy LGG de, Rohden AB, Garcez MR, Costa EB da, Da Dalt S, Andrade JJ de O. Valorization of water treatment sludge waste by application as supplementary cementitious material. Constr Build Mater. Elsevier BV; 2019;223:939–50.

  78. Godoy LGG de, Rohden AB, Garcez MR, Da Dalt S, Bonan Gomes L. Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Stud Constr Mater. Elsevier Ltd; 2020;12.

  79. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122

    Article  Google Scholar 

  80. Ferreiro S, Canut MMC, Lund J, Herfort D (2019) Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl Clay Sci Elsevier Ltd 169:81–90

    Article  Google Scholar 

  81. He C, Makovicky E, Osbæck B (1994) Thermal stability and pozzolanic activity of calcined kaolin. Appl Clay Sci Elsevier 9:165–187

    Article  Google Scholar 

  82. Aiqin W, Chengzhi Z, Ningsheng Z (1999) The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement. Cem Concr Res 29:1721–1726

    Article  Google Scholar 

  83. Castro AL, Pandolfelli VC (2009) Revisão : conceitos de dispersão e empacotamento de partículas para a produção de concretos especiais aplicados na construção civil ( Review : Concepts of particle dispersion and packing for. Cerâmica 55:18–32

    Article  Google Scholar 

  84. Schackow A, Correia SL, Effting C (2020) Influence of microstructural and morphological properties of raw natural clays on the reactivity of clay brick wastes in a cementitious blend matrix. Cerâmica 66:154–163

    Article  Google Scholar 

  85. Tironi A, Cravero F, Scian AN, Irassar EF (2017) Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Appl Clay Sci 147:11–18

    Article  Google Scholar 

  86. Sabir BB, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–545

    Article  Google Scholar 

  87. x Mohammed S. Processing , effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes : A review. Constr Build Mater [Internet]. Elsevier Ltd; 2017;140:10–9. https://doi.org/10.1016/j.conbuildmat.2017.02.078

  88. Aumond JJ. Distribuição, característica e uso dos argilominerais da faixa centro-oriental catarinense. Federal University of Santa Catarina; 1992.

Download references

Funding

This project was partially funded by the National Council for Scientific and Technological Development (CNPq) and CAPES Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica Regina Garcez.

Ethics declarations

Conflicts of interest

The authors declare that there is no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavesi, T.B., Rohden, A.B. & Garcez, M.R. Supporting circular economy through the use of red ceramic waste as supplementary cementitious material in structural concrete. J Mater Cycles Waste Manag 23, 2278–2296 (2021). https://doi.org/10.1007/s10163-021-01292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01292-7

Keywords

Navigation