Skip to main content

Advertisement

Log in

Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This research is mainly focused on the impact of bio waste filler in mechanical applications. The bio wastes from banana, pineapple and coconut plants were used for preparing Banana Fly Ash (BFA), Pineapple Fly Ash (PFA) and Coir Fly Ash (CFA) fillers. These fillers (1–4 wt. %) were incorporated with 30 wt. % of Sisal (S)/Pineapple (P) hybrid fiber composites using epoxy matrix. The X-Ray Diffraction (XRD) results proved the presence of quartz as the main element in the fly ash powders. Tensile strength of 23.78–33.79 MPa was observed by the substitution of BFA, PFA and CFA filler powders, compared to hybrid natural fiber composites with 20.45 MPa properties. Filler mixing add to the adhesion between fiber/matrix and increases the mechanical properties. Similarly, flexural and impact properties enhanced up to 22.11%, 21.77%, with filler incorporation. The SEM results explains good bonding nature by the application of filler powders. The EDX results proved the presence of silica and other inorganic content in the polymer composites adding to the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sukudom N, Jariyasakoolroj P, Jarupan L, Tansin K (2019) Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. J Mater Cycles Waste Manag 21:125–133. https://doi.org/10.1007/s10163-018-0773-y

    Article  Google Scholar 

  2. Keskisaari A, Kärki T (2017) Raw material potential of recyclable materials for fiber composites: a review study. J Mater Cycles Waste Manag 19:1136–1143. https://doi.org/10.1007/s10163-016-0511-2

    Article  Google Scholar 

  3. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites : plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162. https://doi.org/10.1080/15583724.2014.971124

    Article  Google Scholar 

  4. De Paiva FFG, de Maria VPK, Torres GB et al (2019) Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 21:326–335. https://doi.org/10.1007/s10163-018-0801-y

    Article  Google Scholar 

  5. Grause G, Mochizuki T, Kameda T, Yoshioka T (2013) Recovery of glass fibers from glass fiber reinforced plastics by pyrolysis. J Mater Cycles Waste Manag 15:122–128. https://doi.org/10.1007/s10163-012-0101-x

    Article  Google Scholar 

  6. Aslan M, Tufan M, Kucukomeroglu T (2018) Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos Part B 140:241–249. https://doi.org/10.1016/j.compositesb.2017.12.039

    Article  Google Scholar 

  7. Sumesh KR, Kavimani V, Rajeshkumar G, Ravikumar P, Indran S (2020) An Investigation into the mechanical and wear characteristics of hybrid composites : influence of different types and content of biodegradable reinforcements. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1821297

    Article  Google Scholar 

  8. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Anish K (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites : Impact of hybrid natural fibers and oil cake filler addition. J Indistrial Text. https://doi.org/10.1177/1528083720971344

    Article  Google Scholar 

  9. Nguyen H, Jamali Moghadam M, Moayedi H (2019) Agricultural wastes preparation, management, and applications in civil engineering: a review. J Mater Cycles Waste Manag 21:1039–1051. https://doi.org/10.1007/s10163-019-00872-y

    Article  Google Scholar 

  10. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Compos Part B 99:425–435. https://doi.org/10.1016/j.compositesb.2016.06.051

    Article  Google Scholar 

  11. Oushabi A (2019) The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM ): a review. Compos Part B. https://doi.org/10.1016/j.compositesb.2019.107059

    Article  Google Scholar 

  12. Baskaran PG, Kathiresan M, Senthamaraikannan P et al (2017) Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. J Nat Fibers 15:62–68. https://doi.org/10.1080/15440478.2017.1304314

    Article  Google Scholar 

  13. Faruk O, Bledzki AK, Fink H, Sain M (2012) Biocomposites reinforced with natural fibers : 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  14. Jaafar J, Parlaungan J, Mohd S et al (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281. https://doi.org/10.1007/s10924-018-1296-2

    Article  Google Scholar 

  15. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos Part B. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  Google Scholar 

  16. Aiman S, Stubington JF (1993) The pyrolysis kinetics of bagasse at low heating rates. Biomass Bioenerg 5:113–120

    Article  Google Scholar 

  17. Jeong CJ, Park CJ, Il KW (2008) Dynamic analysis of a thorium fuel cycle in CANDU reactors. Ann Nucl Energy 35:1842–1848. https://doi.org/10.1016/j.anucene.2008.04.010

    Article  Google Scholar 

  18. Chaowasakoo T, Sombatsompop N (2007) Mechanical and morphological properties of fly ash / epoxy composites using conventional thermal and microwave curing methods. Compos Sci Technol 67:2282–2291. https://doi.org/10.1016/j.compscitech.2007.01.016

    Article  Google Scholar 

  19. Sundum T, Szécsényi KM, Kaewtatip K (2018) Preparation and characterization of thermoplastic starch composites with fly ash modified by planetary ball milling. Carbohydr Polym 191:198–204. https://doi.org/10.1016/j.carbpol.2018.03.009

    Article  Google Scholar 

  20. Satapathy S, Kothapalli RVS (2017) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ 26:200–213. https://doi.org/10.1007/s10924-017-0938-0

    Article  Google Scholar 

  21. Sumesh KR, Kanthavel K, Vivek S (2019) Mechanical/thermal/vibrational properties of sisal, banana and coir hybrid natural composites by the addition of bio synthesized aluminium oxide nano powder. Mater Res Express. https://doi.org/10.1088/2053-1591/aaff1a

    Article  Google Scholar 

  22. Sheykh MJ, Tarmian A, Doosthoseini K (2017) Wear resistance and friction coefficient of nano-SiO2 and ash-filled HDPE/lignocellulosic fiber composites. Polym Bull 74:4537–4547. https://doi.org/10.1007/s00289-017-1975-5

    Article  Google Scholar 

  23. Abdul Khalil HPS, Masri M, Saurabh CK, Fazita MRN, Azniwati AA, N A Sri Aprilia ER and RD, (2017) Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Mater Res Express. https://doi.org/10.1088/2053-1591/aa62ec

    Article  Google Scholar 

  24. Mohan K, Rajmohan T, Mohan K, Rajmohan T (2017) Fabrication and characterization of MWCNT filled hybrid natural fiber composites. J Nat Fibers 14:864–874. https://doi.org/10.1080/15440478.2017.1300115

    Article  Google Scholar 

  25. Vignesh K (2018) Mercerization Treatment Parameter Effect on Coir Fiber Reinforced Polymer Matrix Composite. Mater Res Express 5:

  26. Oksman K, Skrifvars M, Selin J (2003) Natural fibres as reinforcement in polylactic acid ( PLA ) composites. Compos Sci Technol 63:1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

    Article  Google Scholar 

  27. Khalil HPSA, Fizree HM, Bhat AH et al (2013) Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos Part B 53:324–333. https://doi.org/10.1016/j.compositesb.2013.04.013

    Article  Google Scholar 

  28. Sumesh KR, Kanthavel K (2020) Grey relational optimization for factors influencing tensile, flexural, and impact properties of hybrid sisal banana fiber epoxy composites. J Ind Text. https://doi.org/10.1177/1528083720928501

    Article  Google Scholar 

  29. Sumesh KR, Kanthavel K (2020) Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models. J Ind Text. https://doi.org/10.1177/1528083720930304

    Article  Google Scholar 

  30. Indran S, Raj RE, Daniel BSS, Saravanakumar SS (2015) Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J Reinf Plast Compos. https://doi.org/10.1177/0731684415611756

    Article  Google Scholar 

  31. Rajeshkumar G (2020) An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites. J Ind Text 49:1233–1251. https://doi.org/10.1177/1528083718811085

    Article  Google Scholar 

  32. Vivek S, Kanthavel K (2019) Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Compos Part B Eng 160:170–176. https://doi.org/10.1016/j.compositesb.2018.10.038

    Article  Google Scholar 

  33. Pereira AM, Moraes JCB, Moraes MJB et al (2018) Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Mater Constr 68:1–10. https://doi.org/10.3989/mc.2018.00617

    Article  Google Scholar 

  34. Sumesh KR, Kanthavel K, Kavimani V (2020) Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. Int J Biol Macromol 150:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118

    Article  Google Scholar 

  35. Sumesh KR, Kanthavel K (2020) Abrasive water jet machining of Sisal/Pineapple epoxy hybrid composites with the addition of various fly ash filler. Mater Res Express. https://doi.org/10.1088/2053-1591/ab7865

  36. Parande AK, Stalin K, Thangarajan RK, Karthikeyan MS (2011) Utilization of agroresidual waste in effective blending in portland cement. Int Sch Res Netw. https://doi.org/10.5402/2011/701862

    Article  Google Scholar 

  37. Peng F, Ren J-L, Feng Xu, Bian J, Peng P (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric food Chem 57:6305–6317. https://doi.org/10.1021/jf900986b

    Article  Google Scholar 

  38. El M, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: application for improving the tensile properties of biopolymer nanocomposite fi lms. Ind Crop Prod 112:499–510. https://doi.org/10.1016/j.indcrop.2017.12.049

    Article  Google Scholar 

  39. Bouhfid R, El A, Qaiss K (2019) Sunflower oil cake-derived cellulose nanocrystals: Extraction, physico-chemical characteristics and potential application. Int J Biol Macromol 136:241–252. https://doi.org/10.1016/j.ijbiomac.2019.06.049

    Article  Google Scholar 

  40. Sivaramakrishnan ABK, Purushothaman BKR, Kannan JSS (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber—reinforced hybrid polymer composites. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1881-x

    Article  Google Scholar 

  41. Balaji A, Karthikeyan B, Swaminathan J (2019) Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Adv Compos Hybrid Mater 2:125–132. https://doi.org/10.1007/s42114-019-00079-7

    Article  Google Scholar 

  42. Udhayasankar R, Karthikeyan B, Balaji A (2018) Coconut shell particles reinforced cardanol – formaldehyde resole resin biocomposites: effect of treatment on thermal properties. Int J Polym Anal Charact 23:252–259. https://doi.org/10.1080/1023666X.2018.1427187

    Article  Google Scholar 

  43. Jafrey Daniel D, Sai Krishnan G, Velmurugan P (2019) Investigation on the characteristics of bamboo/jute reinforced hybrid epoxy polymer composites. Mater Res Express. https://doi.org/10.1088/2053-1591/ab3ae7

    Article  Google Scholar 

  44. Sai Krishnan G, Ganesh Babu L, Kumaran P et al (2019) Investigation of Caryota urens fibers on physical, chemical, mechanical and tribological properties for brake pad applications. Mater Res Express. https://doi.org/10.1088/2053-1591/ab5d5b

    Article  Google Scholar 

Download references

Funding

There was no funding for this project.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions

KRS: Conceptualization, Methodology, Software, Writing the Original Draft, Writing, Review & Editing, Funding acquisition, VK: Validation, Formal analysis, Supervision, Visualization, GR: Investigation, Resources, Data Curation, Project administration, SI: Software, Writing the Original Draft, Project administration, GS: Validation, Funding acquisition, Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. R. Sumesh.

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumesh, K.R., Kavimani, V., Rajeshkumar, G. et al. Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag 23, 1277–1288 (2021). https://doi.org/10.1007/s10163-021-01196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01196-6

Keywords

Navigation