Skip to main content

Advertisement

Log in

Circular economy pattern of livestock manure management in Longyou, China

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The development of biogas programs in rural China has led to great economic, social, ecological and environmental benefits. The focus of this study was the identification of the benefit relationship for various stakeholders via the evaluation of relevant policies, an analysis of the costs and benefits and an estimation of the environmental benefits of the livestock manure utilization in a biogas power generation company (BPGC) in Zhejiang province. The results demonstrated that the net present value (NPV) of the project was 8.85 million dollar, and the internal rate of return (IRR) was 36%. Compared to current projects, the BPGC had a higher investment potentiality. The annual environmental benefits of chemical oxygen demand and NH3–N reduction are 2.61 million dollar and 0.21 million dollar, respectively. The environmental benefits of the reduction of greenhouse gas emission is 1.54 million dollar/a. When the environmental benefits were considered in the cost–benefit analysis, the NPV of the project was 42.01 million dollar, and the IRR was 123.98%, and the BPGC exhibited significant social benefits. The government took advantage of a public–private partnership model to reach a common balance of benefits among government, enterprise, hog farms and the residents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Bureau of Statistics (NBS) (2014) China statistical yearbook. China Statistics Press, Beijing (in Chinese)

    Google Scholar 

  2. Livestock Yearbook Editing Committee (LYEC) (2000) China livestock yearbook. China Agricultural Press, Beijing (in Chinese)

    Google Scholar 

  3. Livestock Yearbook Editing Committee (LYEC) (2011) China livestock yearbook. China Agricultural Press, Beijing (in Chinese)

    Google Scholar 

  4. Ministry of Agriculture (CMA) (1999) Chinese organic fertilizer resources. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  5. The Chinese environmental bulletin (2004). State Environmental Protection Administration (SEPA), Beijing (in Chinese)

  6. Ongley ED, Zhang X, Yu T (2010) Current status of agricultural and rural non-point source pollution assessment in china. Environ Pollut 158(5):1159–1168. doi:10.1016/j.envpol.2009.10.047

    Article  Google Scholar 

  7. The first national pollution census bulletin (2010). National Bureau of Statistics (NBS), Beijing (in Chinese)

  8. Liu B, Liu H, Zhang B, Bi J (2013) Modeling nutrient release in the tai lake basin of china: source identification and policy implications. Environ Manage 51(3):724–737. doi:10.1007/s00267-012-9999-y

    Article  Google Scholar 

  9. Demirel B, Göl NP, Onay TT (2013) Erratum to: evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J Mater Cycles Waste Manage 15(3):409–409. doi:10.1007/s10163-013-0142-9

    Article  Google Scholar 

  10. Zhang H, Luo Y, Wu L, Huang Y, Christie P (2015) Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environ Sci Pollut Res 22(8):5908–5918. doi:10.1007/s11356-014-3731-9

    Article  Google Scholar 

  11. Sungur A, Soylak M, Yilmaz S, Ozcan H (2016) Heavy metal mobility and potential availability in animal manure: using a sequential extraction procedure. J Mater Cycles Waste Manage 18(3):563–572. doi:10.1007/s10163-015-0352-4

    Article  Google Scholar 

  12. Li F, Cheng S, Yu H, Yang D (2016) Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J Clean Product 126:451–460. doi:10.1016/j.jclepro.2016.02.104

    Article  Google Scholar 

  13. Galka A (2004) Using a cleaner production preventive strategy for the reduction of the negative environmental impacts of agricultural production—using cattle husbandry as a case study. J Clean Product 12(5):513–516. doi:10.1016/S0959-6526(03)00108-2

    Article  Google Scholar 

  14. Choi YS, Sang KC, Kim SJ, Han SY, Du SJ, Yoon TH et al (2017) Development of combined plant of biogas and bio solid-refuse-fuel from swine manure slurry. J Mater Cycles Waste Manage. doi:10.1007/s10163-017-0594-4

    Google Scholar 

  15. Fujino J, Morita A, Matsuoka Y, Sawayama S (2005) Vision for utilization of livestock residue as bioenergy resource in Japan. Biomass Bioenerg 29(5):367–374. doi:10.1016/j.biombioe.2004.06.017

    Article  Google Scholar 

  16. Skoulou V, Zabaniotou A (2007) Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production. Renew Sustain Energy Rev 11(8):1698–1719. doi:10.1016/j.rser.2005.12.011

    Article  Google Scholar 

  17. Tsai WT, Lin CI (2009) Overview analysis of bioenergy from livestock manure management in Taiwan. Renew Sustain Energy Rev 13(9):2682–2688. doi:10.1016/j.rser.2009.06.018

    Article  Google Scholar 

  18. Bidart C, Fröhling M, Schultmann F (2014) Livestock manure and crop residue for energy generation: macro-assessment at a national scale. Renew Sustain Energy Rev 38(5):537–550. doi:10.1016/j.rser.2014.06.005

    Article  Google Scholar 

  19. Nhu TT, Dewulf J, Serruys P, Huysveld S, Nguyen CV, Sorgeloos P, Schaubroecka T (2015) Resource usage of integrated pig-biogas-fish system: partitioning and substitution within attributional life cycle assessment. Resour Conserv Recycl 102:27–38. doi:10.1016/j.resconrec.2015.06.011

    Article  Google Scholar 

  20. Wang XJ, Lu XG, Yang GH, Feng YZ, Ren GX, Han XH (2016) Development process and probable future transformations of rural biogas in China. Renew Sustain Energy Rev 55:703–712. doi:10.1016/j.rser.2015.09.097

    Article  Google Scholar 

  21. Lee Y, Oa SW (2016) Resource-recovery processes from animal waste as best available technology. J Mater Cycles Waste Manage 18(2):201–207. doi:10.1007/s10163-015-0422-7

    Article  Google Scholar 

  22. Petersen SO, Sommer SG, Béline F, Burton C, Dach J, Dourmad JY et al (2007) Recycling of livestock manure in a entire-farm perspective. Livest Sci 112(3):180–191. doi:10.1016/j.livsci.2007.09.001

    Article  Google Scholar 

  23. Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenerg 32(6):551–557. doi:10.1016/j.biombioe.2007.11.009

    Article  Google Scholar 

  24. Gebrezgabher SA, Meuwissen MPM, Prins BAM, Lansink AGJMO (2010) Economic analysis of anaerobic digestion—a case of Green power biogas plant in The Netherlands. Njas Wagening J Life Sci 57(2):109–115. doi:10.1016/j.njas.2009.07.006

    Article  Google Scholar 

  25. Smyth BM, Smyth H, Murphy JD (2010) Can grass biomethane be an economically viable biofuel for the farmer and the consumer? Biofuels Bioprod Biorefin 4(5):519–537. doi:10.1002/bbb.238

    Article  Google Scholar 

  26. Lantz M (2012) The economic performance of combined heat and power from biogas produced from manure in Sweden—a comparison of different CHP technologies. Appl Energy 98(1):502–511. doi:10.1016/j.apenergy.2012.04.015

    Article  Google Scholar 

  27. Zheng CH, Yi L, Bluemling B, Mol APJ, Chen JN (2014) Environmental potentials of policy instruments to mitigate nutrient emissions in Chinese livestock production. Sci Total Environ 502C:149–156. doi:10.1016/j.scitotenv.2014.09.004

    Google Scholar 

  28. Pan D, Zhou G, Zhang N, Zhang L (2016) Farmers’ preferences for livestock pollution control policy in china: a choice experiment method. J Clean Product 131:572–582. doi:10.1016/j.jclepro.2016.04.133

    Article  Google Scholar 

  29. Chen Y, Wang SJ, Chungchou T, Zhang CJ (2016) Assessment of subsidies to minimize environmental pollution by Intensive Hog Feeding Operation (IHFO). J Clean Product 112:2529–2535. doi:10.1016/j.jclepro.2015.09.090

    Article  Google Scholar 

  30. Brown BB, Yiridoe EK, Gordon R (2007) Impact of single versus multiple policy options on the economic feasibility of biogas energy production: swine and dairy operations in Nova Scotia. Energy Policy 35(9):4597–4610. doi:10.1016/j.enpol.2007.03.023

    Article  Google Scholar 

  31. Freeman R (1984) Strategic management: a stakeholder approach. Cambridge University Press, Cambridge

    Google Scholar 

  32. Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z (2012) Agricultural non-point source pollution in china: causes and mitigation measures. J Hum Environ 41(4):370–379. doi:10.1007/s13280-012-0249-6

    Article  Google Scholar 

  33. Sunstein CR (2004) Cost-Benefit analysis and the environment. Soc Sci Electron Publ 115(2):195–221. doi:10.1007/BF01888891

    Google Scholar 

  34. Sgroi F, Foderà M, Trapani AMD, Tudisca S, Testa R (2015) Cost-benefit analysis: a comparison between conventional and organic olive growing in the Mediterranean Area. Ecol Eng 82:542–546. doi:10.1016/j.ecoleng.2015.05.043

    Article  Google Scholar 

  35. Xiong XO, Li YX, Li W, Lin CY, Han W, Yang M (2010) Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour Conserv Recycl 54(11):985–990. doi:10.1016/j.resconrec.2010.02.005

    Article  Google Scholar 

  36. Wu X, Wu F, Tong X, Wu J, Sun L, Peng X (2015) Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: analysis of the ecological recycle of wastes. Resour Conserv Recycl 96:40–50. doi:10.1016/j.resconrec.2015.01.010

    Article  Google Scholar 

  37. State Environmental Protection Administration (SEPA) (2002) The pollution investigation and prevention countermeasures of Chinese scale livestock and poultry breeding. China Environmental Science Press, Beijing

    Google Scholar 

  38. Yan TZ, Du HY, Xia W, Cheng B, Zheng F (2009) Poultry and animal feces pollution situation and countermeasures in Anhui province (in Chinese). Agro-Environ Dev 26(2):58–62. doi:10.3969/j.issn.1005-4944.2009.02.018

    Google Scholar 

  39. Zhang XM, Dong YH, Wang H, Shen D (2007) Pollution of livestock and poultry feces in jiangsu and countermeasures (in Chinese). Soils 39(5):708–712. doi:10.13758/j.cnki.tr.2007.05.020

    Google Scholar 

  40. ACM0010 (2006) Consolidated baseline methodology for GHG emission reductions from manure management systems [EB/OL]. http://cdm.unfccc.int/methodologies/index.html

  41. IPCC (2006) IPCC guidelines for national greenhouse gas inventories Agriculture, forestry and other land use, vol 4. IGES, Japan

    Google Scholar 

  42. State Environmental Protection Administration (SEPA) (2004) The pollution coefficient table of livestock and poultry breeding. http://www.mep.gov.cn/gkml/zj/wj/200910/t20091022_172271.htm. Accessed 6 Mar 2016

  43. National Development and Reform Commission (NDRC) (2009) Chinese regional power grid baseline emission factor. http://qhs.ndrc.gov.cn/qjfzjz/200907/t20090703_289357.html. Accessed 2 Mar 2016

  44. Wang Z, Xiao ZY, Dai Y (2009) CDM project of large-scaled animal farms in arid region and estimation of greenhouse gas mitigation (in Chinese). J Ecol Rural Environ 25(4):1–7. doi:10.3969/j.issn.1673-4831.2009.04.001

    Google Scholar 

  45. Ma RH, Ding YF, Nan GL, Ma ZH (2008) Economic evaluation of scale pig farm methane project based on the clean development mechanism (in Chinese). Chin J Anim Sci 44(17):50–52

    Google Scholar 

  46. Hong YZ, Lin B, Dai YW, Yu JH (2010) Economic benefits evaluation of large-scale pig farm biogas project based on sensitivity analysis (in Chinese). Chin Agric Sci Bull 26(14):388–391

    Google Scholar 

  47. Wang XL, Chen YQ, Peng S, Gao WS, Feng Q, Xia W (2014) Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: an emergy evaluation based on LCA. J Clean Product 65(4):234–245. doi:10.1016/j.jclepro.2013.09.001

    Article  Google Scholar 

  48. Chen Y, Hu W, Feng Y, Sweeney S (2014) Status and prospects of rural biogas development in China. Renew Sustain Energy Rev 39(6):679–685. doi:10.1016/j.rser.2014.07.119

    Article  Google Scholar 

  49. Rasheed R, Khan N, Yasar A, Su YH, Tabinda AB (2016) Design and cost-benefit analysis of a novel anaerobic industrial bioenergy plant in Pakistan. Renew Energy 90:242–247. doi:10.1016/j.renene.2016.01.008

    Article  Google Scholar 

  50. He Z, Peng J (2015) Evaluation on the external environment cost of pig-breeding with different size in sichuan province of China. Environ Prog Sustain Energy 34(5):1488–1496. doi:10.1002/ep.12139

    Article  Google Scholar 

  51. Sorda G, Sunak Y, Madlener R (2013) An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany. Ecol Econ 89(3):43–60. doi:10.1016/j.ecolecon.2013.01.022

    Article  Google Scholar 

  52. Rupf GV, Bahri PA, Boer KD, Mchenry MP (2015) Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. Renew Sustain Energy Rev 52:468–476. doi:10.1016/j.rser.2015.07.107

    Article  Google Scholar 

  53. Wang HL, Fan M, Luo CL, Xi XP, Shi JM, Sun LY (2014) Case study on carbon dioxide reduction of biogas power generation in large-scale pig farm (in Chinese). Jiangxi Sci 32(5):674–678. doi:10.13990/j.issn1001-3679.2014.05.021

    Google Scholar 

  54. Stürmer B, Schmid E, Eder MW (2011) Impacts of biogas plant performance factors on total substrate costs. Biomass Bioenerg 35(4):1552–1560. doi:10.1016/j.biombioe.2010.12.030

    Article  Google Scholar 

  55. Wang XL, Li ZJ, Long P, Yan LL, Gao WS, Chen YQ, Sui P (2016) Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour Conserv Recycl 117:114–124. doi:10.1016/j.resconrec.2016.11.009

    Article  Google Scholar 

  56. León E, Martín M (2016) Optimal production of power in a combined cycle from manure based biogas. Energy Convers Manage 114:89–99. doi:10.1016/j.enconman.2016.02.002

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by Renmin University of China: the special developing and guiding fund for building world-class universities (disciplines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunhu Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ma, Z., Chen, Y. et al. Circular economy pattern of livestock manure management in Longyou, China. J Mater Cycles Waste Manag 20, 1050–1062 (2018). https://doi.org/10.1007/s10163-017-0667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-017-0667-4

Keywords

Navigation